ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcidlem GIF version

Theorem pcidlem 12250
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.)
Assertion
Ref Expression
pcidlem ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)

Proof of Theorem pcidlem
StepHypRef Expression
1 simpl 108 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℙ)
2 prmnn 12038 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 14 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℕ)
4 simpr 109 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)
53, 4nnexpcld 10606 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
61, 5pccld 12228 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ∈ ℕ0)
76nn0red 9164 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ∈ ℝ)
87leidd 8408 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)))
95nnzd 9308 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℤ)
10 pcdvdsb 12247 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑃𝐴) ∈ ℤ ∧ (𝑃 pCnt (𝑃𝐴)) ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴)))
111, 9, 6, 10syl3anc 1228 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴)))
128, 11mpbid 146 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴))
133, 6nnexpcld 10606 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℕ)
1413nnzd 9308 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℤ)
15 dvdsle 11778 . . . . 5 (((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℤ ∧ (𝑃𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
1614, 5, 15syl2anc 409 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
1712, 16mpd 13 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴))
183nnred 8866 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℝ)
19 prmuz2 12059 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
20 eluz2gt1 9536 . . . . 5 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
211, 19, 203syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 1 < 𝑃)
22 nn0leexp2 10620 . . . 4 (((𝑃 ∈ ℝ ∧ (𝑃 pCnt (𝑃𝐴)) ∈ ℕ0𝐴 ∈ ℕ0) ∧ 1 < 𝑃) → ((𝑃 pCnt (𝑃𝐴)) ≤ 𝐴 ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
2318, 6, 4, 21, 22syl31anc 1231 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ 𝐴 ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
2417, 23mpbird 166 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ≤ 𝐴)
25 iddvds 11740 . . . 4 ((𝑃𝐴) ∈ ℤ → (𝑃𝐴) ∥ (𝑃𝐴))
269, 25syl 14 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∥ (𝑃𝐴))
27 pcdvdsb 12247 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑃𝐴) ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃𝐴) ∥ (𝑃𝐴)))
281, 9, 4, 27syl3anc 1228 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃𝐴) ∥ (𝑃𝐴)))
2926, 28mpbird 166 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt (𝑃𝐴)))
30 nn0re 9119 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
3130adantl 275 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ)
327, 31letri3d 8010 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) = 𝐴 ↔ ((𝑃 pCnt (𝑃𝐴)) ≤ 𝐴𝐴 ≤ (𝑃 pCnt (𝑃𝐴)))))
3324, 29, 32mpbir2and 934 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136   class class class wbr 3981  cfv 5187  (class class class)co 5841  cr 7748  1c1 7750   < clt 7929  cle 7930  cn 8853  2c2 8904  0cn0 9110  cz 9187  cuz 9462  cexp 10450  cdvds 11723  cprime 12035   pCnt cpc 12212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-1o 6380  df-2o 6381  df-er 6497  df-en 6703  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-dvds 11724  df-gcd 11872  df-prm 12036  df-pc 12213
This theorem is referenced by:  pcid  12251  pcmpt  12269
  Copyright terms: Public domain W3C validator