Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pcidlem | GIF version |
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.) |
Ref | Expression |
---|---|
pcidlem | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℙ) | |
2 | prmnn 12053 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
3 | 1, 2 | syl 14 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℕ) |
4 | simpr 109 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0) | |
5 | 3, 4 | nnexpcld 10620 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∈ ℕ) |
6 | 1, 5 | pccld 12243 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ∈ ℕ0) |
7 | 6 | nn0red 9178 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ∈ ℝ) |
8 | 7 | leidd 8422 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴))) |
9 | 5 | nnzd 9322 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∈ ℤ) |
10 | pcdvdsb 12262 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃↑𝐴) ∈ ℤ ∧ (𝑃 pCnt (𝑃↑𝐴)) ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴))) | |
11 | 1, 9, 6, 10 | syl3anc 1233 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴))) |
12 | 8, 11 | mpbid 146 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴)) |
13 | 3, 6 | nnexpcld 10620 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℕ) |
14 | 13 | nnzd 9322 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℤ) |
15 | dvdsle 11793 | . . . . 5 ⊢ (((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℤ ∧ (𝑃↑𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) | |
16 | 14, 5, 15 | syl2anc 409 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) |
17 | 12, 16 | mpd 13 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴)) |
18 | 3 | nnred 8880 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℝ) |
19 | prmuz2 12074 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
20 | eluz2gt1 9550 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 < 𝑃) | |
21 | 1, 19, 20 | 3syl 17 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 1 < 𝑃) |
22 | nn0leexp2 10634 | . . . 4 ⊢ (((𝑃 ∈ ℝ ∧ (𝑃 pCnt (𝑃↑𝐴)) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0) ∧ 1 < 𝑃) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴 ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) | |
23 | 18, 6, 4, 21, 22 | syl31anc 1236 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴 ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) |
24 | 17, 23 | mpbird 166 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴) |
25 | iddvds 11755 | . . . 4 ⊢ ((𝑃↑𝐴) ∈ ℤ → (𝑃↑𝐴) ∥ (𝑃↑𝐴)) | |
26 | 9, 25 | syl 14 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∥ (𝑃↑𝐴)) |
27 | pcdvdsb 12262 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃↑𝐴) ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑𝐴) ∥ (𝑃↑𝐴))) | |
28 | 1, 9, 4, 27 | syl3anc 1233 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑𝐴) ∥ (𝑃↑𝐴))) |
29 | 26, 28 | mpbird 166 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴))) |
30 | nn0re 9133 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
31 | 30 | adantl 275 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ) |
32 | 7, 31 | letri3d 8024 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) = 𝐴 ↔ ((𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴 ∧ 𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴))))) |
33 | 24, 29, 32 | mpbir2and 939 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 class class class wbr 3987 ‘cfv 5196 (class class class)co 5851 ℝcr 7762 1c1 7764 < clt 7943 ≤ cle 7944 ℕcn 8867 2c2 8918 ℕ0cn0 9124 ℤcz 9201 ℤ≥cuz 9476 ↑cexp 10464 ∥ cdvds 11738 ℙcprime 12050 pCnt cpc 12227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-mulrcl 7862 ax-addcom 7863 ax-mulcom 7864 ax-addass 7865 ax-mulass 7866 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-1rid 7870 ax-0id 7871 ax-rnegex 7872 ax-precex 7873 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-apti 7878 ax-pre-ltadd 7879 ax-pre-mulgt0 7880 ax-pre-mulext 7881 ax-arch 7882 ax-caucvg 7883 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-1o 6393 df-2o 6394 df-er 6510 df-en 6716 df-sup 6958 df-inf 6959 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-reap 8483 df-ap 8490 df-div 8579 df-inn 8868 df-2 8926 df-3 8927 df-4 8928 df-n0 9125 df-z 9202 df-uz 9477 df-q 9568 df-rp 9600 df-fz 9955 df-fzo 10088 df-fl 10215 df-mod 10268 df-seqfrec 10391 df-exp 10465 df-cj 10795 df-re 10796 df-im 10797 df-rsqrt 10951 df-abs 10952 df-dvds 11739 df-gcd 11887 df-prm 12051 df-pc 12228 |
This theorem is referenced by: pcid 12266 pcmpt 12284 |
Copyright terms: Public domain | W3C validator |