| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcidlem | GIF version | ||
| Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.) |
| Ref | Expression |
|---|---|
| pcidlem | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℙ) | |
| 2 | prmnn 12517 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 3 | 1, 2 | syl 14 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℕ) |
| 4 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0) | |
| 5 | 3, 4 | nnexpcld 10872 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∈ ℕ) |
| 6 | 1, 5 | pccld 12708 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ∈ ℕ0) |
| 7 | 6 | nn0red 9379 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ∈ ℝ) |
| 8 | 7 | leidd 8617 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴))) |
| 9 | 5 | nnzd 9524 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∈ ℤ) |
| 10 | pcdvdsb 12728 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃↑𝐴) ∈ ℤ ∧ (𝑃 pCnt (𝑃↑𝐴)) ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴))) | |
| 11 | 1, 9, 6, 10 | syl3anc 1250 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴))) |
| 12 | 8, 11 | mpbid 147 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴)) |
| 13 | 3, 6 | nnexpcld 10872 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℕ) |
| 14 | 13 | nnzd 9524 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℤ) |
| 15 | dvdsle 12240 | . . . . 5 ⊢ (((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℤ ∧ (𝑃↑𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) | |
| 16 | 14, 5, 15 | syl2anc 411 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) |
| 17 | 12, 16 | mpd 13 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴)) |
| 18 | 3 | nnred 9079 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℝ) |
| 19 | prmuz2 12538 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
| 20 | eluz2gt1 9753 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 < 𝑃) | |
| 21 | 1, 19, 20 | 3syl 17 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 1 < 𝑃) |
| 22 | nn0leexp2 10887 | . . . 4 ⊢ (((𝑃 ∈ ℝ ∧ (𝑃 pCnt (𝑃↑𝐴)) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0) ∧ 1 < 𝑃) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴 ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) | |
| 23 | 18, 6, 4, 21, 22 | syl31anc 1253 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴 ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) |
| 24 | 17, 23 | mpbird 167 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴) |
| 25 | iddvds 12200 | . . . 4 ⊢ ((𝑃↑𝐴) ∈ ℤ → (𝑃↑𝐴) ∥ (𝑃↑𝐴)) | |
| 26 | 9, 25 | syl 14 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∥ (𝑃↑𝐴)) |
| 27 | pcdvdsb 12728 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃↑𝐴) ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑𝐴) ∥ (𝑃↑𝐴))) | |
| 28 | 1, 9, 4, 27 | syl3anc 1250 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑𝐴) ∥ (𝑃↑𝐴))) |
| 29 | 26, 28 | mpbird 167 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴))) |
| 30 | nn0re 9334 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 31 | 30 | adantl 277 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ) |
| 32 | 7, 31 | letri3d 8218 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) = 𝐴 ↔ ((𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴 ∧ 𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴))))) |
| 33 | 24, 29, 32 | mpbir2and 947 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 class class class wbr 4054 ‘cfv 5285 (class class class)co 5962 ℝcr 7954 1c1 7956 < clt 8137 ≤ cle 8138 ℕcn 9066 2c2 9117 ℕ0cn0 9325 ℤcz 9402 ℤ≥cuz 9678 ↑cexp 10715 ∥ cdvds 12183 ℙcprime 12514 pCnt cpc 12692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-1o 6520 df-2o 6521 df-er 6638 df-en 6846 df-sup 7107 df-inf 7108 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-n0 9326 df-z 9403 df-uz 9679 df-q 9771 df-rp 9806 df-fz 10161 df-fzo 10295 df-fl 10445 df-mod 10500 df-seqfrec 10625 df-exp 10716 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-dvds 12184 df-gcd 12360 df-prm 12515 df-pc 12693 |
| This theorem is referenced by: pcid 12732 pcmpt 12751 dvdsppwf1o 15546 |
| Copyright terms: Public domain | W3C validator |