ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lemul2ad GIF version

Theorem lemul2ad 8868
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„)
divgt0d.2 (๐œ‘ โ†’ ๐ต โˆˆ โ„)
lemul1ad.3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„)
lemul1ad.4 (๐œ‘ โ†’ 0 โ‰ค ๐ถ)
lemul1ad.5 (๐œ‘ โ†’ ๐ด โ‰ค ๐ต)
Assertion
Ref Expression
lemul2ad (๐œ‘ โ†’ (๐ถ ยท ๐ด) โ‰ค (๐ถ ยท ๐ต))

Proof of Theorem lemul2ad
StepHypRef Expression
1 ltp1d.1 . 2 (๐œ‘ โ†’ ๐ด โˆˆ โ„)
2 divgt0d.2 . 2 (๐œ‘ โ†’ ๐ต โˆˆ โ„)
3 lemul1ad.3 . . 3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„)
4 lemul1ad.4 . . 3 (๐œ‘ โ†’ 0 โ‰ค ๐ถ)
53, 4jca 306 . 2 (๐œ‘ โ†’ (๐ถ โˆˆ โ„ โˆง 0 โ‰ค ๐ถ))
6 lemul1ad.5 . 2 (๐œ‘ โ†’ ๐ด โ‰ค ๐ต)
7 lemul2a 8787 . 2 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 โ‰ค ๐ถ)) โˆง ๐ด โ‰ค ๐ต) โ†’ (๐ถ ยท ๐ด) โ‰ค (๐ถ ยท ๐ต))
81, 2, 5, 6, 7syl31anc 1241 1 (๐œ‘ โ†’ (๐ถ ยท ๐ด) โ‰ค (๐ถ ยท ๐ต))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โˆˆ wcel 2146   class class class wbr 3998  (class class class)co 5865  โ„cr 7785  0cc0 7786   ยท cmul 7791   โ‰ค cle 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513
This theorem is referenced by:  mulle0r  8872  flqmulnn0  10267  leexp2r  10542  bdtrilem  11214  cvgratnnlemfm  11504  efcllemp  11633  dveflem  13680  rpabscxpbnd  13852
  Copyright terms: Public domain W3C validator