ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rplpwr GIF version

Theorem rplpwr 10891
Description: If 𝐴 and 𝐵 are relatively prime, then so are 𝐴𝑁 and 𝐵. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rplpwr ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd 𝐵) = 1))

Proof of Theorem rplpwr
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5621 . . . . . . . 8 (𝑘 = 1 → (𝐴𝑘) = (𝐴↑1))
21oveq1d 5628 . . . . . . 7 (𝑘 = 1 → ((𝐴𝑘) gcd 𝐵) = ((𝐴↑1) gcd 𝐵))
32eqeq1d 2093 . . . . . 6 (𝑘 = 1 → (((𝐴𝑘) gcd 𝐵) = 1 ↔ ((𝐴↑1) gcd 𝐵) = 1))
43imbi2d 228 . . . . 5 (𝑘 = 1 → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑1) gcd 𝐵) = 1)))
5 oveq2 5621 . . . . . . . 8 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
65oveq1d 5628 . . . . . . 7 (𝑘 = 𝑛 → ((𝐴𝑘) gcd 𝐵) = ((𝐴𝑛) gcd 𝐵))
76eqeq1d 2093 . . . . . 6 (𝑘 = 𝑛 → (((𝐴𝑘) gcd 𝐵) = 1 ↔ ((𝐴𝑛) gcd 𝐵) = 1))
87imbi2d 228 . . . . 5 (𝑘 = 𝑛 → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑛) gcd 𝐵) = 1)))
9 oveq2 5621 . . . . . . . 8 (𝑘 = (𝑛 + 1) → (𝐴𝑘) = (𝐴↑(𝑛 + 1)))
109oveq1d 5628 . . . . . . 7 (𝑘 = (𝑛 + 1) → ((𝐴𝑘) gcd 𝐵) = ((𝐴↑(𝑛 + 1)) gcd 𝐵))
1110eqeq1d 2093 . . . . . 6 (𝑘 = (𝑛 + 1) → (((𝐴𝑘) gcd 𝐵) = 1 ↔ ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))
1211imbi2d 228 . . . . 5 (𝑘 = (𝑛 + 1) → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1)))
13 oveq2 5621 . . . . . . . 8 (𝑘 = 𝑁 → (𝐴𝑘) = (𝐴𝑁))
1413oveq1d 5628 . . . . . . 7 (𝑘 = 𝑁 → ((𝐴𝑘) gcd 𝐵) = ((𝐴𝑁) gcd 𝐵))
1514eqeq1d 2093 . . . . . 6 (𝑘 = 𝑁 → (((𝐴𝑘) gcd 𝐵) = 1 ↔ ((𝐴𝑁) gcd 𝐵) = 1))
1615imbi2d 228 . . . . 5 (𝑘 = 𝑁 → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd 𝐵) = 1)))
17 nncn 8365 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
1817exp1d 9977 . . . . . . . . 9 (𝐴 ∈ ℕ → (𝐴↑1) = 𝐴)
1918oveq1d 5628 . . . . . . . 8 (𝐴 ∈ ℕ → ((𝐴↑1) gcd 𝐵) = (𝐴 gcd 𝐵))
2019adantr 270 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑1) gcd 𝐵) = (𝐴 gcd 𝐵))
2120eqeq1d 2093 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑1) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))
2221biimpar 291 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑1) gcd 𝐵) = 1)
23 df-3an 924 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑛 ∈ ℕ))
24 simpl1 944 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ)
2524nncnd 8371 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℂ)
26 simpl3 946 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝑛 ∈ ℕ)
2726nnnn0d 8659 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝑛 ∈ ℕ0)
2825, 27expp1d 9983 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) = ((𝐴𝑛) · 𝐴))
29 simp1 941 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℕ)
30 nnnn0 8613 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
31303ad2ant3 964 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
3229, 31nnexpcld 10004 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℕ)
3332nnzd 8800 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℤ)
3433adantr 270 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑛) ∈ ℤ)
3534zcnd 8802 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑛) ∈ ℂ)
3635, 25mulcomd 7453 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑛) · 𝐴) = (𝐴 · (𝐴𝑛)))
3728, 36eqtrd 2117 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) = (𝐴 · (𝐴𝑛)))
3837oveq2d 5629 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd (𝐴↑(𝑛 + 1))) = (𝐵 gcd (𝐴 · (𝐴𝑛))))
39 simpl2 945 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℕ)
4032adantr 270 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑛) ∈ ℕ)
41 nnz 8702 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
42413ad2ant1 962 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℤ)
43 nnz 8702 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
44433ad2ant2 963 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℤ)
45 gcdcom 10840 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
4642, 44, 45syl2anc 403 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
4746eqeq1d 2093 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐴) = 1))
4847biimpa 290 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd 𝐴) = 1)
49 rpmulgcd 10890 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ (𝐴𝑛) ∈ ℕ) ∧ (𝐵 gcd 𝐴) = 1) → (𝐵 gcd (𝐴 · (𝐴𝑛))) = (𝐵 gcd (𝐴𝑛)))
5039, 24, 40, 48, 49syl31anc 1175 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd (𝐴 · (𝐴𝑛))) = (𝐵 gcd (𝐴𝑛)))
5138, 50eqtrd 2117 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd (𝐴↑(𝑛 + 1))) = (𝐵 gcd (𝐴𝑛)))
52 peano2nn 8369 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
53523ad2ant3 964 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
5453adantr 270 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝑛 + 1) ∈ ℕ)
5554nnnn0d 8659 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝑛 + 1) ∈ ℕ0)
5624, 55nnexpcld 10004 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) ∈ ℕ)
5756nnzd 8800 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) ∈ ℤ)
5844adantr 270 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℤ)
59 gcdcom 10840 . . . . . . . . . . . . 13 (((𝐴↑(𝑛 + 1)) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = (𝐵 gcd (𝐴↑(𝑛 + 1))))
6057, 58, 59syl2anc 403 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = (𝐵 gcd (𝐴↑(𝑛 + 1))))
61 gcdcom 10840 . . . . . . . . . . . . 13 (((𝐴𝑛) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝑛) gcd 𝐵) = (𝐵 gcd (𝐴𝑛)))
6234, 58, 61syl2anc 403 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑛) gcd 𝐵) = (𝐵 gcd (𝐴𝑛)))
6351, 60, 623eqtr4d 2127 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = ((𝐴𝑛) gcd 𝐵))
6463eqeq1d 2093 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1 ↔ ((𝐴𝑛) gcd 𝐵) = 1))
6564biimprd 156 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))
6623, 65sylanbr 279 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))
6766an32s 533 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑛 ∈ ℕ) → (((𝐴𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))
6867expcom 114 . . . . . 6 (𝑛 ∈ ℕ → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1)))
6968a2d 26 . . . . 5 (𝑛 ∈ ℕ → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑛) gcd 𝐵) = 1) → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1)))
704, 8, 12, 16, 22, 69nnind 8373 . . . 4 (𝑁 ∈ ℕ → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd 𝐵) = 1))
7170expd 254 . . 3 (𝑁 ∈ ℕ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd 𝐵) = 1)))
7271com12 30 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd 𝐵) = 1)))
73723impia 1138 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd 𝐵) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 922   = wceq 1287  wcel 1436  (class class class)co 5613  1c1 7295   + caddc 7297   · cmul 7299  cn 8357  0cn0 8606  cz 8683  cexp 9852   gcd cgcd 10813
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-mulrcl 7388  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-precex 7399  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405  ax-pre-mulgt0 7406  ax-pre-mulext 7407  ax-arch 7408  ax-caucvg 7409
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-ilim 4170  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-frec 6110  df-sup 6623  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-reap 7993  df-ap 8000  df-div 8079  df-inn 8358  df-2 8416  df-3 8417  df-4 8418  df-n0 8607  df-z 8684  df-uz 8952  df-q 9037  df-rp 9067  df-fz 9357  df-fzo 9482  df-fl 9605  df-mod 9658  df-iseq 9780  df-iexp 9853  df-cj 10171  df-re 10172  df-im 10173  df-rsqrt 10326  df-abs 10327  df-dvds 10672  df-gcd 10814
This theorem is referenced by:  rppwr  10892
  Copyright terms: Public domain W3C validator