ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rplpwr GIF version

Theorem rplpwr 12398
Description: If 𝐴 and 𝐵 are relatively prime, then so are 𝐴𝑁 and 𝐵. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rplpwr ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd 𝐵) = 1))

Proof of Theorem rplpwr
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5962 . . . . . . . 8 (𝑘 = 1 → (𝐴𝑘) = (𝐴↑1))
21oveq1d 5969 . . . . . . 7 (𝑘 = 1 → ((𝐴𝑘) gcd 𝐵) = ((𝐴↑1) gcd 𝐵))
32eqeq1d 2215 . . . . . 6 (𝑘 = 1 → (((𝐴𝑘) gcd 𝐵) = 1 ↔ ((𝐴↑1) gcd 𝐵) = 1))
43imbi2d 230 . . . . 5 (𝑘 = 1 → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑1) gcd 𝐵) = 1)))
5 oveq2 5962 . . . . . . . 8 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
65oveq1d 5969 . . . . . . 7 (𝑘 = 𝑛 → ((𝐴𝑘) gcd 𝐵) = ((𝐴𝑛) gcd 𝐵))
76eqeq1d 2215 . . . . . 6 (𝑘 = 𝑛 → (((𝐴𝑘) gcd 𝐵) = 1 ↔ ((𝐴𝑛) gcd 𝐵) = 1))
87imbi2d 230 . . . . 5 (𝑘 = 𝑛 → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑛) gcd 𝐵) = 1)))
9 oveq2 5962 . . . . . . . 8 (𝑘 = (𝑛 + 1) → (𝐴𝑘) = (𝐴↑(𝑛 + 1)))
109oveq1d 5969 . . . . . . 7 (𝑘 = (𝑛 + 1) → ((𝐴𝑘) gcd 𝐵) = ((𝐴↑(𝑛 + 1)) gcd 𝐵))
1110eqeq1d 2215 . . . . . 6 (𝑘 = (𝑛 + 1) → (((𝐴𝑘) gcd 𝐵) = 1 ↔ ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))
1211imbi2d 230 . . . . 5 (𝑘 = (𝑛 + 1) → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1)))
13 oveq2 5962 . . . . . . . 8 (𝑘 = 𝑁 → (𝐴𝑘) = (𝐴𝑁))
1413oveq1d 5969 . . . . . . 7 (𝑘 = 𝑁 → ((𝐴𝑘) gcd 𝐵) = ((𝐴𝑁) gcd 𝐵))
1514eqeq1d 2215 . . . . . 6 (𝑘 = 𝑁 → (((𝐴𝑘) gcd 𝐵) = 1 ↔ ((𝐴𝑁) gcd 𝐵) = 1))
1615imbi2d 230 . . . . 5 (𝑘 = 𝑁 → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd 𝐵) = 1)))
17 nncn 9057 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
1817exp1d 10826 . . . . . . . . 9 (𝐴 ∈ ℕ → (𝐴↑1) = 𝐴)
1918oveq1d 5969 . . . . . . . 8 (𝐴 ∈ ℕ → ((𝐴↑1) gcd 𝐵) = (𝐴 gcd 𝐵))
2019adantr 276 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑1) gcd 𝐵) = (𝐴 gcd 𝐵))
2120eqeq1d 2215 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑1) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))
2221biimpar 297 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑1) gcd 𝐵) = 1)
23 df-3an 983 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑛 ∈ ℕ))
24 simpl1 1003 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ)
2524nncnd 9063 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℂ)
26 simpl3 1005 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝑛 ∈ ℕ)
2726nnnn0d 9361 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝑛 ∈ ℕ0)
2825, 27expp1d 10832 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) = ((𝐴𝑛) · 𝐴))
29 simp1 1000 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℕ)
30 nnnn0 9315 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
31303ad2ant3 1023 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
3229, 31nnexpcld 10853 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℕ)
3332nnzd 9507 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℤ)
3433adantr 276 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑛) ∈ ℤ)
3534zcnd 9509 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑛) ∈ ℂ)
3635, 25mulcomd 8107 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑛) · 𝐴) = (𝐴 · (𝐴𝑛)))
3728, 36eqtrd 2239 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) = (𝐴 · (𝐴𝑛)))
3837oveq2d 5970 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd (𝐴↑(𝑛 + 1))) = (𝐵 gcd (𝐴 · (𝐴𝑛))))
39 simpl2 1004 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℕ)
4032adantr 276 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑛) ∈ ℕ)
41 nnz 9404 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
42413ad2ant1 1021 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℤ)
43 nnz 9404 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
44433ad2ant2 1022 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℤ)
45 gcdcom 12344 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
4642, 44, 45syl2anc 411 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
4746eqeq1d 2215 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐴) = 1))
4847biimpa 296 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd 𝐴) = 1)
49 rpmulgcd 12397 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ (𝐴𝑛) ∈ ℕ) ∧ (𝐵 gcd 𝐴) = 1) → (𝐵 gcd (𝐴 · (𝐴𝑛))) = (𝐵 gcd (𝐴𝑛)))
5039, 24, 40, 48, 49syl31anc 1253 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd (𝐴 · (𝐴𝑛))) = (𝐵 gcd (𝐴𝑛)))
5138, 50eqtrd 2239 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd (𝐴↑(𝑛 + 1))) = (𝐵 gcd (𝐴𝑛)))
52 peano2nn 9061 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
53523ad2ant3 1023 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
5453adantr 276 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝑛 + 1) ∈ ℕ)
5554nnnn0d 9361 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝑛 + 1) ∈ ℕ0)
5624, 55nnexpcld 10853 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) ∈ ℕ)
5756nnzd 9507 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) ∈ ℤ)
5844adantr 276 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℤ)
59 gcdcom 12344 . . . . . . . . . . . . 13 (((𝐴↑(𝑛 + 1)) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = (𝐵 gcd (𝐴↑(𝑛 + 1))))
6057, 58, 59syl2anc 411 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = (𝐵 gcd (𝐴↑(𝑛 + 1))))
61 gcdcom 12344 . . . . . . . . . . . . 13 (((𝐴𝑛) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝑛) gcd 𝐵) = (𝐵 gcd (𝐴𝑛)))
6234, 58, 61syl2anc 411 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑛) gcd 𝐵) = (𝐵 gcd (𝐴𝑛)))
6351, 60, 623eqtr4d 2249 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = ((𝐴𝑛) gcd 𝐵))
6463eqeq1d 2215 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1 ↔ ((𝐴𝑛) gcd 𝐵) = 1))
6564biimprd 158 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))
6623, 65sylanbr 285 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))
6766an32s 568 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑛 ∈ ℕ) → (((𝐴𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))
6867expcom 116 . . . . . 6 (𝑛 ∈ ℕ → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1)))
6968a2d 26 . . . . 5 (𝑛 ∈ ℕ → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑛) gcd 𝐵) = 1) → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1)))
704, 8, 12, 16, 22, 69nnind 9065 . . . 4 (𝑁 ∈ ℕ → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd 𝐵) = 1))
7170expd 258 . . 3 (𝑁 ∈ ℕ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd 𝐵) = 1)))
7271com12 30 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd 𝐵) = 1)))
73723impia 1203 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd 𝐵) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  (class class class)co 5954  1c1 7939   + caddc 7941   · cmul 7943  cn 9049  0cn0 9308  cz 9385  cexp 10696   gcd cgcd 12324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-sup 7098  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-fz 10144  df-fzo 10278  df-fl 10426  df-mod 10481  df-seqfrec 10606  df-exp 10697  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-dvds 12149  df-gcd 12325
This theorem is referenced by:  rppwr  12399  logbgcd1irr  15489  logbgcd1irraplemexp  15490  lgsne0  15565  2sqlem8  15650
  Copyright terms: Public domain W3C validator