| Step | Hyp | Ref
 | Expression | 
| 1 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝑘 = 1 → (𝐴↑𝑘) = (𝐴↑1)) | 
| 2 | 1 | oveq1d 5937 | 
. . . . . . 7
⊢ (𝑘 = 1 → ((𝐴↑𝑘) gcd 𝐵) = ((𝐴↑1) gcd 𝐵)) | 
| 3 | 2 | eqeq1d 2205 | 
. . . . . 6
⊢ (𝑘 = 1 → (((𝐴↑𝑘) gcd 𝐵) = 1 ↔ ((𝐴↑1) gcd 𝐵) = 1)) | 
| 4 | 3 | imbi2d 230 | 
. . . . 5
⊢ (𝑘 = 1 → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑1) gcd 𝐵) = 1))) | 
| 5 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (𝐴↑𝑘) = (𝐴↑𝑛)) | 
| 6 | 5 | oveq1d 5937 | 
. . . . . . 7
⊢ (𝑘 = 𝑛 → ((𝐴↑𝑘) gcd 𝐵) = ((𝐴↑𝑛) gcd 𝐵)) | 
| 7 | 6 | eqeq1d 2205 | 
. . . . . 6
⊢ (𝑘 = 𝑛 → (((𝐴↑𝑘) gcd 𝐵) = 1 ↔ ((𝐴↑𝑛) gcd 𝐵) = 1)) | 
| 8 | 7 | imbi2d 230 | 
. . . . 5
⊢ (𝑘 = 𝑛 → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑𝑛) gcd 𝐵) = 1))) | 
| 9 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝑘 = (𝑛 + 1) → (𝐴↑𝑘) = (𝐴↑(𝑛 + 1))) | 
| 10 | 9 | oveq1d 5937 | 
. . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → ((𝐴↑𝑘) gcd 𝐵) = ((𝐴↑(𝑛 + 1)) gcd 𝐵)) | 
| 11 | 10 | eqeq1d 2205 | 
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → (((𝐴↑𝑘) gcd 𝐵) = 1 ↔ ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1)) | 
| 12 | 11 | imbi2d 230 | 
. . . . 5
⊢ (𝑘 = (𝑛 + 1) → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))) | 
| 13 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝑘 = 𝑁 → (𝐴↑𝑘) = (𝐴↑𝑁)) | 
| 14 | 13 | oveq1d 5937 | 
. . . . . . 7
⊢ (𝑘 = 𝑁 → ((𝐴↑𝑘) gcd 𝐵) = ((𝐴↑𝑁) gcd 𝐵)) | 
| 15 | 14 | eqeq1d 2205 | 
. . . . . 6
⊢ (𝑘 = 𝑁 → (((𝐴↑𝑘) gcd 𝐵) = 1 ↔ ((𝐴↑𝑁) gcd 𝐵) = 1)) | 
| 16 | 15 | imbi2d 230 | 
. . . . 5
⊢ (𝑘 = 𝑁 → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑𝑁) gcd 𝐵) = 1))) | 
| 17 |   | nncn 8998 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) | 
| 18 | 17 | exp1d 10760 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ → (𝐴↑1) = 𝐴) | 
| 19 | 18 | oveq1d 5937 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → ((𝐴↑1) gcd 𝐵) = (𝐴 gcd 𝐵)) | 
| 20 | 19 | adantr 276 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑1) gcd 𝐵) = (𝐴 gcd 𝐵)) | 
| 21 | 20 | eqeq1d 2205 | 
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑1) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)) | 
| 22 | 21 | biimpar 297 | 
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑1) gcd 𝐵) = 1) | 
| 23 |   | df-3an 982 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑛 ∈
ℕ)) | 
| 24 |   | simpl1 1002 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ) | 
| 25 | 24 | nncnd 9004 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℂ) | 
| 26 |   | simpl3 1004 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝑛 ∈ ℕ) | 
| 27 | 26 | nnnn0d 9302 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝑛 ∈ ℕ0) | 
| 28 | 25, 27 | expp1d 10766 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) = ((𝐴↑𝑛) · 𝐴)) | 
| 29 |   | simp1 999 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈
ℕ) | 
| 30 |   | nnnn0 9256 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) | 
| 31 | 30 | 3ad2ant3 1022 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈
ℕ0) | 
| 32 | 29, 31 | nnexpcld 10787 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝐴↑𝑛) ∈ ℕ) | 
| 33 | 32 | nnzd 9447 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝐴↑𝑛) ∈ ℤ) | 
| 34 | 33 | adantr 276 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑𝑛) ∈ ℤ) | 
| 35 | 34 | zcnd 9449 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑𝑛) ∈ ℂ) | 
| 36 | 35, 25 | mulcomd 8048 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑𝑛) · 𝐴) = (𝐴 · (𝐴↑𝑛))) | 
| 37 | 28, 36 | eqtrd 2229 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) = (𝐴 · (𝐴↑𝑛))) | 
| 38 | 37 | oveq2d 5938 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd (𝐴↑(𝑛 + 1))) = (𝐵 gcd (𝐴 · (𝐴↑𝑛)))) | 
| 39 |   | simpl2 1003 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℕ) | 
| 40 | 32 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑𝑛) ∈ ℕ) | 
| 41 |   | nnz 9345 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) | 
| 42 | 41 | 3ad2ant1 1020 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈
ℤ) | 
| 43 |   | nnz 9345 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) | 
| 44 | 43 | 3ad2ant2 1021 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐵 ∈
ℤ) | 
| 45 |   | gcdcom 12140 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴)) | 
| 46 | 42, 44, 45 | syl2anc 411 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴)) | 
| 47 | 46 | eqeq1d 2205 | 
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐴) = 1)) | 
| 48 | 47 | biimpa 296 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd 𝐴) = 1) | 
| 49 |   | rpmulgcd 12193 | 
. . . . . . . . . . . . . 14
⊢ (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ (𝐴↑𝑛) ∈ ℕ) ∧ (𝐵 gcd 𝐴) = 1) → (𝐵 gcd (𝐴 · (𝐴↑𝑛))) = (𝐵 gcd (𝐴↑𝑛))) | 
| 50 | 39, 24, 40, 48, 49 | syl31anc 1252 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd (𝐴 · (𝐴↑𝑛))) = (𝐵 gcd (𝐴↑𝑛))) | 
| 51 | 38, 50 | eqtrd 2229 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd (𝐴↑(𝑛 + 1))) = (𝐵 gcd (𝐴↑𝑛))) | 
| 52 |   | peano2nn 9002 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) | 
| 53 | 52 | 3ad2ant3 1022 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈
ℕ) | 
| 54 | 53 | adantr 276 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝑛 + 1) ∈ ℕ) | 
| 55 | 54 | nnnn0d 9302 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝑛 + 1) ∈
ℕ0) | 
| 56 | 24, 55 | nnexpcld 10787 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) ∈ ℕ) | 
| 57 | 56 | nnzd 9447 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) ∈ ℤ) | 
| 58 | 44 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℤ) | 
| 59 |   | gcdcom 12140 | 
. . . . . . . . . . . . 13
⊢ (((𝐴↑(𝑛 + 1)) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = (𝐵 gcd (𝐴↑(𝑛 + 1)))) | 
| 60 | 57, 58, 59 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = (𝐵 gcd (𝐴↑(𝑛 + 1)))) | 
| 61 |   | gcdcom 12140 | 
. . . . . . . . . . . . 13
⊢ (((𝐴↑𝑛) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴↑𝑛) gcd 𝐵) = (𝐵 gcd (𝐴↑𝑛))) | 
| 62 | 34, 58, 61 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑𝑛) gcd 𝐵) = (𝐵 gcd (𝐴↑𝑛))) | 
| 63 | 51, 60, 62 | 3eqtr4d 2239 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = ((𝐴↑𝑛) gcd 𝐵)) | 
| 64 | 63 | eqeq1d 2205 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1 ↔ ((𝐴↑𝑛) gcd 𝐵) = 1)) | 
| 65 | 64 | biimprd 158 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴↑𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1)) | 
| 66 | 23, 65 | sylanbr 285 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴↑𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1)) | 
| 67 | 66 | an32s 568 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑛 ∈ ℕ) → (((𝐴↑𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1)) | 
| 68 | 67 | expcom 116 | 
. . . . . 6
⊢ (𝑛 ∈ ℕ → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴↑𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))) | 
| 69 | 68 | a2d 26 | 
. . . . 5
⊢ (𝑛 ∈ ℕ → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑𝑛) gcd 𝐵) = 1) → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))) | 
| 70 | 4, 8, 12, 16, 22, 69 | nnind 9006 | 
. . . 4
⊢ (𝑁 ∈ ℕ → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑𝑁) gcd 𝐵) = 1)) | 
| 71 | 70 | expd 258 | 
. . 3
⊢ (𝑁 ∈ ℕ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd 𝐵) = 1))) | 
| 72 | 71 | com12 30 | 
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd 𝐵) = 1))) | 
| 73 | 72 | 3impia 1202 | 
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd 𝐵) = 1)) |