ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponrestid GIF version

Theorem toponrestid 14435
Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.)
Hypothesis
Ref Expression
toponrestid.t 𝐴 ∈ (TopOn‘𝐵)
Assertion
Ref Expression
toponrestid 𝐴 = (𝐴t 𝐵)

Proof of Theorem toponrestid
StepHypRef Expression
1 toponrestid.t . . 3 𝐴 ∈ (TopOn‘𝐵)
21toponunii 14431 . . . 4 𝐵 = 𝐴
32restid 13024 . . 3 (𝐴 ∈ (TopOn‘𝐵) → (𝐴t 𝐵) = 𝐴)
41, 3ax-mp 5 . 2 (𝐴t 𝐵) = 𝐴
54eqcomi 2208 1 𝐴 = (𝐴t 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wcel 2175  cfv 5270  (class class class)co 5943  t crest 13013  TopOnctopon 14424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-rest 13015  df-topon 14425
This theorem is referenced by:  cncfcn1cntop  15008  cncfmpt2fcntop  15013  cnrehmeocntop  15024  cnlimcim  15085  cnlimc  15086  dvidlemap  15105  dvcnp2cntop  15113  dvcn  15114  dvaddxxbr  15115  dvmulxxbr  15116  dvcoapbr  15121  dvcjbr  15122  dvrecap  15127  dveflem  15140  dvply1  15179
  Copyright terms: Public domain W3C validator