| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wlkelvv | GIF version | ||
| Description: A walk is an ordered pair. (Contributed by Jim Kingdon, 2-Feb-2026.) |
| Ref | Expression |
|---|---|
| wlkelvv | ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkop 16059 | . 2 ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
| 2 | 1stexg 6313 | . . 3 ⊢ (𝑊 ∈ (Walks‘𝐺) → (1st ‘𝑊) ∈ V) | |
| 3 | 2ndexg 6314 | . . 3 ⊢ (𝑊 ∈ (Walks‘𝐺) → (2nd ‘𝑊) ∈ V) | |
| 4 | 2, 3 | opelxpd 4752 | . 2 ⊢ (𝑊 ∈ (Walks‘𝐺) → 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∈ (V × V)) |
| 5 | 1, 4 | eqeltrd 2306 | 1 ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 ∈ (V × V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Vcvv 2799 〈cop 3669 × cxp 4717 ‘cfv 5318 1st c1st 6284 2nd c2nd 6285 Walkscwlks 16030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 df-1st 6286 df-2nd 6287 df-wlks 16031 |
| This theorem is referenced by: wlkeq 16065 |
| Copyright terms: Public domain | W3C validator |