ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  z2ge GIF version

Theorem z2ge 9450
Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.)
Assertion
Ref Expression
z2ge ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem z2ge
StepHypRef Expression
1 simplr 500 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
2 simpr 109 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑀𝑁)
31zred 9025 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℝ)
43leidd 8143 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁𝑁)
5 breq2 3879 . . . . 5 (𝑘 = 𝑁 → (𝑀𝑘𝑀𝑁))
6 breq2 3879 . . . . 5 (𝑘 = 𝑁 → (𝑁𝑘𝑁𝑁))
75, 6anbi12d 460 . . . 4 (𝑘 = 𝑁 → ((𝑀𝑘𝑁𝑘) ↔ (𝑀𝑁𝑁𝑁)))
87rspcev 2744 . . 3 ((𝑁 ∈ ℤ ∧ (𝑀𝑁𝑁𝑁)) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
91, 2, 4, 8syl12anc 1182 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
10 simpll 499 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℤ)
1110zred 9025 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℝ)
1211leidd 8143 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀𝑀)
13 simpr 109 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → 𝑁𝑀)
14 breq2 3879 . . . . 5 (𝑘 = 𝑀 → (𝑀𝑘𝑀𝑀))
15 breq2 3879 . . . . 5 (𝑘 = 𝑀 → (𝑁𝑘𝑁𝑀))
1614, 15anbi12d 460 . . . 4 (𝑘 = 𝑀 → ((𝑀𝑘𝑁𝑘) ↔ (𝑀𝑀𝑁𝑀)))
1716rspcev 2744 . . 3 ((𝑀 ∈ ℤ ∧ (𝑀𝑀𝑁𝑀)) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
1810, 12, 13, 17syl12anc 1182 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
19 zletric 8950 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁𝑀))
209, 18, 19mpjaodan 753 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  wrex 2376   class class class wbr 3875  cle 7673  cz 8906
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator