![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > z2ge | GIF version |
Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.) |
Ref | Expression |
---|---|
z2ge | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 528 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ ℤ) | |
2 | simpr 110 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ 𝑁) | |
3 | 1 | zred 9439 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ ℝ) |
4 | 3 | leidd 8533 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → 𝑁 ≤ 𝑁) |
5 | breq2 4033 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑁)) | |
6 | breq2 4033 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑁 ≤ 𝑘 ↔ 𝑁 ≤ 𝑁)) | |
7 | 5, 6 | anbi12d 473 | . . . 4 ⊢ (𝑘 = 𝑁 → ((𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘) ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑁))) |
8 | 7 | rspcev 2864 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑁)) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
9 | 1, 2, 4, 8 | syl12anc 1247 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
10 | simpll 527 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → 𝑀 ∈ ℤ) | |
11 | 10 | zred 9439 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → 𝑀 ∈ ℝ) |
12 | 11 | leidd 8533 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → 𝑀 ≤ 𝑀) |
13 | simpr 110 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → 𝑁 ≤ 𝑀) | |
14 | breq2 4033 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑀)) | |
15 | breq2 4033 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑁 ≤ 𝑘 ↔ 𝑁 ≤ 𝑀)) | |
16 | 14, 15 | anbi12d 473 | . . . 4 ⊢ (𝑘 = 𝑀 → ((𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘) ↔ (𝑀 ≤ 𝑀 ∧ 𝑁 ≤ 𝑀))) |
17 | 16 | rspcev 2864 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑀 ∧ 𝑁 ≤ 𝑀)) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
18 | 10, 12, 13, 17 | syl12anc 1247 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
19 | zletric 9361 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ∨ 𝑁 ≤ 𝑀)) | |
20 | 9, 18, 19 | mpjaodan 799 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 class class class wbr 4029 ≤ cle 8055 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |