![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > z2ge | GIF version |
Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.) |
Ref | Expression |
---|---|
z2ge | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 528 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ ℤ) | |
2 | simpr 110 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ 𝑁) | |
3 | 1 | zred 9375 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ ℝ) |
4 | 3 | leidd 8471 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → 𝑁 ≤ 𝑁) |
5 | breq2 4008 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑁)) | |
6 | breq2 4008 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑁 ≤ 𝑘 ↔ 𝑁 ≤ 𝑁)) | |
7 | 5, 6 | anbi12d 473 | . . . 4 ⊢ (𝑘 = 𝑁 → ((𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘) ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑁))) |
8 | 7 | rspcev 2842 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑁)) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
9 | 1, 2, 4, 8 | syl12anc 1236 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
10 | simpll 527 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → 𝑀 ∈ ℤ) | |
11 | 10 | zred 9375 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → 𝑀 ∈ ℝ) |
12 | 11 | leidd 8471 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → 𝑀 ≤ 𝑀) |
13 | simpr 110 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → 𝑁 ≤ 𝑀) | |
14 | breq2 4008 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑀)) | |
15 | breq2 4008 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑁 ≤ 𝑘 ↔ 𝑁 ≤ 𝑀)) | |
16 | 14, 15 | anbi12d 473 | . . . 4 ⊢ (𝑘 = 𝑀 → ((𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘) ↔ (𝑀 ≤ 𝑀 ∧ 𝑁 ≤ 𝑀))) |
17 | 16 | rspcev 2842 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑀 ∧ 𝑁 ≤ 𝑀)) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
18 | 10, 12, 13, 17 | syl12anc 1236 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
19 | zletric 9297 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ∨ 𝑁 ≤ 𝑀)) | |
20 | 9, 18, 19 | mpjaodan 798 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 class class class wbr 4004 ≤ cle 7993 ℤcz 9253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-n0 9177 df-z 9254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |