| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > z2ge | GIF version | ||
| Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.) |
| Ref | Expression |
|---|---|
| z2ge | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 528 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ ℤ) | |
| 2 | simpr 110 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ 𝑁) | |
| 3 | 1 | zred 9448 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ ℝ) |
| 4 | 3 | leidd 8541 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → 𝑁 ≤ 𝑁) |
| 5 | breq2 4037 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑁)) | |
| 6 | breq2 4037 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑁 ≤ 𝑘 ↔ 𝑁 ≤ 𝑁)) | |
| 7 | 5, 6 | anbi12d 473 | . . . 4 ⊢ (𝑘 = 𝑁 → ((𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘) ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑁))) |
| 8 | 7 | rspcev 2868 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑁)) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
| 9 | 1, 2, 4, 8 | syl12anc 1247 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
| 10 | simpll 527 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → 𝑀 ∈ ℤ) | |
| 11 | 10 | zred 9448 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → 𝑀 ∈ ℝ) |
| 12 | 11 | leidd 8541 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → 𝑀 ≤ 𝑀) |
| 13 | simpr 110 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → 𝑁 ≤ 𝑀) | |
| 14 | breq2 4037 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑀)) | |
| 15 | breq2 4037 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑁 ≤ 𝑘 ↔ 𝑁 ≤ 𝑀)) | |
| 16 | 14, 15 | anbi12d 473 | . . . 4 ⊢ (𝑘 = 𝑀 → ((𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘) ↔ (𝑀 ≤ 𝑀 ∧ 𝑁 ≤ 𝑀))) |
| 17 | 16 | rspcev 2868 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑀 ≤ 𝑀 ∧ 𝑁 ≤ 𝑀)) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
| 18 | 10, 12, 13, 17 | syl12anc 1247 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≤ 𝑀) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
| 19 | zletric 9370 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ∨ 𝑁 ≤ 𝑀)) | |
| 20 | 9, 18, 19 | mpjaodan 799 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 class class class wbr 4033 ≤ cle 8062 ℤcz 9326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |