ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  z2ge GIF version

Theorem z2ge 9753
Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.)
Assertion
Ref Expression
z2ge ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem z2ge
StepHypRef Expression
1 simplr 520 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
2 simpr 109 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑀𝑁)
31zred 9304 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℝ)
43leidd 8403 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁𝑁)
5 breq2 3980 . . . . 5 (𝑘 = 𝑁 → (𝑀𝑘𝑀𝑁))
6 breq2 3980 . . . . 5 (𝑘 = 𝑁 → (𝑁𝑘𝑁𝑁))
75, 6anbi12d 465 . . . 4 (𝑘 = 𝑁 → ((𝑀𝑘𝑁𝑘) ↔ (𝑀𝑁𝑁𝑁)))
87rspcev 2825 . . 3 ((𝑁 ∈ ℤ ∧ (𝑀𝑁𝑁𝑁)) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
91, 2, 4, 8syl12anc 1225 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
10 simpll 519 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℤ)
1110zred 9304 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℝ)
1211leidd 8403 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀𝑀)
13 simpr 109 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → 𝑁𝑀)
14 breq2 3980 . . . . 5 (𝑘 = 𝑀 → (𝑀𝑘𝑀𝑀))
15 breq2 3980 . . . . 5 (𝑘 = 𝑀 → (𝑁𝑘𝑁𝑀))
1614, 15anbi12d 465 . . . 4 (𝑘 = 𝑀 → ((𝑀𝑘𝑁𝑘) ↔ (𝑀𝑀𝑁𝑀)))
1716rspcev 2825 . . 3 ((𝑀 ∈ ℤ ∧ (𝑀𝑀𝑁𝑀)) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
1810, 12, 13, 17syl12anc 1225 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
19 zletric 9226 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁𝑀))
209, 18, 19mpjaodan 788 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wcel 2135  wrex 2443   class class class wbr 3976  cle 7925  cz 9182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator