ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  z2ge GIF version

Theorem z2ge 9762
Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.)
Assertion
Ref Expression
z2ge ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem z2ge
StepHypRef Expression
1 simplr 520 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
2 simpr 109 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑀𝑁)
31zred 9313 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℝ)
43leidd 8412 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁𝑁)
5 breq2 3986 . . . . 5 (𝑘 = 𝑁 → (𝑀𝑘𝑀𝑁))
6 breq2 3986 . . . . 5 (𝑘 = 𝑁 → (𝑁𝑘𝑁𝑁))
75, 6anbi12d 465 . . . 4 (𝑘 = 𝑁 → ((𝑀𝑘𝑁𝑘) ↔ (𝑀𝑁𝑁𝑁)))
87rspcev 2830 . . 3 ((𝑁 ∈ ℤ ∧ (𝑀𝑁𝑁𝑁)) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
91, 2, 4, 8syl12anc 1226 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
10 simpll 519 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℤ)
1110zred 9313 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℝ)
1211leidd 8412 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀𝑀)
13 simpr 109 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → 𝑁𝑀)
14 breq2 3986 . . . . 5 (𝑘 = 𝑀 → (𝑀𝑘𝑀𝑀))
15 breq2 3986 . . . . 5 (𝑘 = 𝑀 → (𝑁𝑘𝑁𝑀))
1614, 15anbi12d 465 . . . 4 (𝑘 = 𝑀 → ((𝑀𝑘𝑁𝑘) ↔ (𝑀𝑀𝑁𝑀)))
1716rspcev 2830 . . 3 ((𝑀 ∈ ℤ ∧ (𝑀𝑀𝑁𝑀)) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
1810, 12, 13, 17syl12anc 1226 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁𝑀) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
19 zletric 9235 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁𝑀))
209, 18, 19mpjaodan 788 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  cle 7934  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator