| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ltpnf | Structured version Visualization version GIF version | ||
| Description: Zero is less than plus infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0ltpnf | ⊢ 0 < +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11183 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | ltpnf 13087 | . 2 ⊢ (0 ∈ ℝ → 0 < +∞) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 < +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 0cc0 11075 +∞cpnf 11212 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addrcl 11136 ax-rnegex 11146 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-pnf 11217 df-xr 11219 df-ltxr 11220 |
| This theorem is referenced by: xmulgt0 13250 reltxrnmnf 13310 hashneq0 14336 hashge2el2dif 14452 sgnpnf 15066 pnfnei 23114 0bdop 31929 xlt2addrd 32689 xnn0gt0 32699 xrge0mulc1cn 33938 pnfneige0 33948 lmxrge0 33949 mbfposadd 37668 ftc1anclem5 37698 fourierdlem111 46222 fouriersw 46236 |
| Copyright terms: Public domain | W3C validator |