![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ltpnf | Structured version Visualization version GIF version |
Description: Zero is less than plus infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0ltpnf | ⊢ 0 < +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10478 | . 2 ⊢ 0 ∈ ℝ | |
2 | ltpnf 12354 | . 2 ⊢ (0 ∈ ℝ → 0 < +∞) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 < +∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2079 class class class wbr 4956 ℝcr 10371 0cc0 10372 +∞cpnf 10507 < clt 10510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-1cn 10430 ax-addrcl 10433 ax-rnegex 10443 ax-cnre 10445 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-xp 5441 df-pnf 10512 df-xr 10514 df-ltxr 10515 |
This theorem is referenced by: xmulgt0 12515 reltxrnmnf 12574 hashneq0 13563 hashge2el2dif 13672 sgnpnf 14274 pnfnei 21500 0bdop 29449 xlt2addrd 30143 xnn0gt0 30155 xrge0mulc1cn 30757 pnfneige0 30767 lmxrge0 30768 mbfposadd 34416 ftc1anclem5 34448 fourierdlem111 41998 fouriersw 42012 |
Copyright terms: Public domain | W3C validator |