| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ltpnf | Structured version Visualization version GIF version | ||
| Description: Zero is less than plus infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0ltpnf | ⊢ 0 < +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11117 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | ltpnf 13022 | . 2 ⊢ (0 ∈ ℝ → 0 < +∞) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 < +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5092 ℝcr 11008 0cc0 11009 +∞cpnf 11146 < clt 11149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-1cn 11067 ax-addrcl 11070 ax-rnegex 11080 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-pnf 11151 df-xr 11153 df-ltxr 11154 |
| This theorem is referenced by: xmulgt0 13185 reltxrnmnf 13245 hashneq0 14271 hashge2el2dif 14387 sgnpnf 15000 pnfnei 23105 0bdop 31937 xlt2addrd 32702 xnn0gt0 32712 xrge0mulc1cn 33908 pnfneige0 33918 lmxrge0 33919 mbfposadd 37647 ftc1anclem5 37677 fourierdlem111 46198 fouriersw 46212 |
| Copyright terms: Public domain | W3C validator |