Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ltpnf | Structured version Visualization version GIF version |
Description: Zero is less than plus infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0ltpnf | ⊢ 0 < +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10977 | . 2 ⊢ 0 ∈ ℝ | |
2 | ltpnf 12856 | . 2 ⊢ (0 ∈ ℝ → 0 < +∞) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 < +∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 0cc0 10871 +∞cpnf 11006 < clt 11009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-pnf 11011 df-xr 11013 df-ltxr 11014 |
This theorem is referenced by: xmulgt0 13017 reltxrnmnf 13076 hashneq0 14079 hashge2el2dif 14194 sgnpnf 14804 pnfnei 22371 0bdop 30355 xlt2addrd 31081 xnn0gt0 31092 xrge0mulc1cn 31891 pnfneige0 31901 lmxrge0 31902 mbfposadd 35824 ftc1anclem5 35854 fourierdlem111 43758 fouriersw 43772 |
Copyright terms: Public domain | W3C validator |