MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ltpnf Structured version   Visualization version   GIF version

Theorem 0ltpnf 13024
Description: Zero is less than plus infinity. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0ltpnf 0 < +∞

Proof of Theorem 0ltpnf
StepHypRef Expression
1 0re 11117 . 2 0 ∈ ℝ
2 ltpnf 13022 . 2 (0 ∈ ℝ → 0 < +∞)
31, 2ax-mp 5 1 0 < +∞
Colors of variables: wff setvar class
Syntax hints:  wcel 2109   class class class wbr 5092  cr 11008  0cc0 11009  +∞cpnf 11146   < clt 11149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-1cn 11067  ax-addrcl 11070  ax-rnegex 11080  ax-cnre 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-pnf 11151  df-xr 11153  df-ltxr 11154
This theorem is referenced by:  xmulgt0  13185  reltxrnmnf  13245  hashneq0  14271  hashge2el2dif  14387  sgnpnf  15000  pnfnei  23105  0bdop  31937  xlt2addrd  32702  xnn0gt0  32712  xrge0mulc1cn  33908  pnfneige0  33918  lmxrge0  33919  mbfposadd  37647  ftc1anclem5  37677  fourierdlem111  46198  fouriersw  46212
  Copyright terms: Public domain W3C validator