![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ltpnf | Structured version Visualization version GIF version |
Description: Zero is less than plus infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0ltpnf | ⊢ 0 < +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11260 | . 2 ⊢ 0 ∈ ℝ | |
2 | ltpnf 13159 | . 2 ⊢ (0 ∈ ℝ → 0 < +∞) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 < +∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 class class class wbr 5147 ℝcr 11151 0cc0 11152 +∞cpnf 11289 < clt 11292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-1cn 11210 ax-addrcl 11213 ax-rnegex 11223 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-pnf 11294 df-xr 11296 df-ltxr 11297 |
This theorem is referenced by: xmulgt0 13321 reltxrnmnf 13380 hashneq0 14399 hashge2el2dif 14515 sgnpnf 15128 pnfnei 23243 0bdop 32021 xlt2addrd 32768 xnn0gt0 32779 xrge0mulc1cn 33901 pnfneige0 33911 lmxrge0 33912 mbfposadd 37653 ftc1anclem5 37683 fourierdlem111 46172 fouriersw 46186 |
Copyright terms: Public domain | W3C validator |