![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ltpnf | Structured version Visualization version GIF version |
Description: Zero is less than plus infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0ltpnf | ⊢ 0 < +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11292 | . 2 ⊢ 0 ∈ ℝ | |
2 | ltpnf 13183 | . 2 ⊢ (0 ∈ ℝ → 0 < +∞) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 < +∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 0cc0 11184 +∞cpnf 11321 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-pnf 11326 df-xr 11328 df-ltxr 11329 |
This theorem is referenced by: xmulgt0 13345 reltxrnmnf 13404 hashneq0 14413 hashge2el2dif 14529 sgnpnf 15142 pnfnei 23249 0bdop 32025 xlt2addrd 32765 xnn0gt0 32776 xrge0mulc1cn 33887 pnfneige0 33897 lmxrge0 33898 mbfposadd 37627 ftc1anclem5 37657 fourierdlem111 46138 fouriersw 46152 |
Copyright terms: Public domain | W3C validator |