MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ltpnf Structured version   Visualization version   GIF version

Theorem 0ltpnf 13138
Description: Zero is less than plus infinity. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0ltpnf 0 < +∞

Proof of Theorem 0ltpnf
StepHypRef Expression
1 0re 11237 . 2 0 ∈ ℝ
2 ltpnf 13136 . 2 (0 ∈ ℝ → 0 < +∞)
31, 2ax-mp 5 1 0 < +∞
Colors of variables: wff setvar class
Syntax hints:  wcel 2108   class class class wbr 5119  cr 11128  0cc0 11129  +∞cpnf 11266   < clt 11269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-1cn 11187  ax-addrcl 11190  ax-rnegex 11200  ax-cnre 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-pnf 11271  df-xr 11273  df-ltxr 11274
This theorem is referenced by:  xmulgt0  13299  reltxrnmnf  13359  hashneq0  14382  hashge2el2dif  14498  sgnpnf  15112  pnfnei  23158  0bdop  31974  xlt2addrd  32736  xnn0gt0  32746  xrge0mulc1cn  33972  pnfneige0  33982  lmxrge0  33983  mbfposadd  37691  ftc1anclem5  37721  fourierdlem111  46246  fouriersw  46260
  Copyright terms: Public domain W3C validator