| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ltpnf | Structured version Visualization version GIF version | ||
| Description: Zero is less than plus infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0ltpnf | ⊢ 0 < +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11152 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | ltpnf 13056 | . 2 ⊢ (0 ∈ ℝ → 0 < +∞) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 < +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 0cc0 11044 +∞cpnf 11181 < clt 11184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-1cn 11102 ax-addrcl 11105 ax-rnegex 11115 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-pnf 11186 df-xr 11188 df-ltxr 11189 |
| This theorem is referenced by: xmulgt0 13219 reltxrnmnf 13279 hashneq0 14305 hashge2el2dif 14421 sgnpnf 15035 pnfnei 23140 0bdop 31972 xlt2addrd 32732 xnn0gt0 32742 xrge0mulc1cn 33924 pnfneige0 33934 lmxrge0 33935 mbfposadd 37654 ftc1anclem5 37684 fourierdlem111 46208 fouriersw 46222 |
| Copyright terms: Public domain | W3C validator |