MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ltpnf Structured version   Visualization version   GIF version

Theorem 0ltpnf 13082
Description: Zero is less than plus infinity. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0ltpnf 0 < +∞

Proof of Theorem 0ltpnf
StepHypRef Expression
1 0re 11176 . 2 0 ∈ ℝ
2 ltpnf 13080 . 2 (0 ∈ ℝ → 0 < +∞)
31, 2ax-mp 5 1 0 < +∞
Colors of variables: wff setvar class
Syntax hints:  wcel 2109   class class class wbr 5107  cr 11067  0cc0 11068  +∞cpnf 11205   < clt 11208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addrcl 11129  ax-rnegex 11139  ax-cnre 11141
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-pnf 11210  df-xr 11212  df-ltxr 11213
This theorem is referenced by:  xmulgt0  13243  reltxrnmnf  13303  hashneq0  14329  hashge2el2dif  14445  sgnpnf  15059  pnfnei  23107  0bdop  31922  xlt2addrd  32682  xnn0gt0  32692  xrge0mulc1cn  33931  pnfneige0  33941  lmxrge0  33942  mbfposadd  37661  ftc1anclem5  37691  fourierdlem111  46215  fouriersw  46229
  Copyright terms: Public domain W3C validator