MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ltpnf Structured version   Visualization version   GIF version

Theorem 0ltpnf 13058
Description: Zero is less than plus infinity. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0ltpnf 0 < +∞

Proof of Theorem 0ltpnf
StepHypRef Expression
1 0re 11152 . 2 0 ∈ ℝ
2 ltpnf 13056 . 2 (0 ∈ ℝ → 0 < +∞)
31, 2ax-mp 5 1 0 < +∞
Colors of variables: wff setvar class
Syntax hints:  wcel 2109   class class class wbr 5102  cr 11043  0cc0 11044  +∞cpnf 11181   < clt 11184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-1cn 11102  ax-addrcl 11105  ax-rnegex 11115  ax-cnre 11117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-pnf 11186  df-xr 11188  df-ltxr 11189
This theorem is referenced by:  xmulgt0  13219  reltxrnmnf  13279  hashneq0  14305  hashge2el2dif  14421  sgnpnf  15035  pnfnei  23083  0bdop  31895  xlt2addrd  32655  xnn0gt0  32665  xrge0mulc1cn  33904  pnfneige0  33914  lmxrge0  33915  mbfposadd  37634  ftc1anclem5  37664  fourierdlem111  46188  fouriersw  46202
  Copyright terms: Public domain W3C validator