Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ltpnf | Structured version Visualization version GIF version |
Description: Zero is less than plus infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0ltpnf | ⊢ 0 < +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11087 | . 2 ⊢ 0 ∈ ℝ | |
2 | ltpnf 12966 | . 2 ⊢ (0 ∈ ℝ → 0 < +∞) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 < +∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 class class class wbr 5100 ℝcr 10980 0cc0 10981 +∞cpnf 11116 < clt 11119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-1cn 11039 ax-addrcl 11042 ax-rnegex 11052 ax-cnre 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-opab 5163 df-xp 5633 df-pnf 11121 df-xr 11123 df-ltxr 11124 |
This theorem is referenced by: xmulgt0 13127 reltxrnmnf 13186 hashneq0 14188 hashge2el2dif 14303 sgnpnf 14908 pnfnei 22481 0bdop 30709 xlt2addrd 31432 xnn0gt0 31443 xrge0mulc1cn 32253 pnfneige0 32263 lmxrge0 32264 mbfposadd 35980 ftc1anclem5 36010 fourierdlem111 44146 fouriersw 44160 |
Copyright terms: Public domain | W3C validator |