MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulgt0 Structured version   Visualization version   GIF version

Theorem xmulgt0 12946
Description: Extended real version of mulgt0 10983. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulgt0 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))

Proof of Theorem xmulgt0
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴)
2 simpr 484 . . . . . 6 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → 0 < 𝐵)
31, 2anim12i 612 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (0 < 𝐴 ∧ 0 < 𝐵))
4 mulgt0 10983 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
54an4s 656 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
65ancoms 458 . . . . . 6 (((0 < 𝐴 ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 0 < (𝐴 · 𝐵))
7 rexmul 12934 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
87adantl 481 . . . . . 6 (((0 < 𝐴 ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
96, 8breqtrrd 5098 . . . . 5 (((0 < 𝐴 ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 0 < (𝐴 ·e 𝐵))
103, 9sylan 579 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 0 < (𝐴 ·e 𝐵))
1110anassrs 467 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 0 < (𝐴 ·e 𝐵))
12 0ltpnf 12787 . . . . 5 0 < +∞
13 oveq2 7263 . . . . . 6 (𝐵 = +∞ → (𝐴 ·e 𝐵) = (𝐴 ·e +∞))
14 xmulpnf1 12937 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
1514adantr 480 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (𝐴 ·e +∞) = +∞)
1613, 15sylan9eqr 2801 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐵) = +∞)
1712, 16breqtrrid 5108 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐵 = +∞) → 0 < (𝐴 ·e 𝐵))
1817adantlr 711 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → 0 < (𝐴 ·e 𝐵))
19 simplrr 774 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) → 0 < 𝐵)
20 xmulasslem2 12945 . . . 4 ((0 < 𝐵𝐵 = -∞) → 0 < (𝐴 ·e 𝐵))
2119, 20sylan 579 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → 0 < (𝐴 ·e 𝐵))
22 simprl 767 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ*)
23 elxr 12781 . . . . 5 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2422, 23sylib 217 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2524adantr 480 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2611, 18, 21, 25mpjao3dan 1429 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) → 0 < (𝐴 ·e 𝐵))
27 oveq1 7262 . . . 4 (𝐴 = +∞ → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
28 xmulpnf2 12938 . . . . 5 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
2928adantl 481 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (+∞ ·e 𝐵) = +∞)
3027, 29sylan9eqr 2801 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐵) = +∞)
3112, 30breqtrrid 5108 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 = +∞) → 0 < (𝐴 ·e 𝐵))
32 xmulasslem2 12945 . . 3 ((0 < 𝐴𝐴 = -∞) → 0 < (𝐴 ·e 𝐵))
3332ad4ant24 750 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 = -∞) → 0 < (𝐴 ·e 𝐵))
34 simpll 763 . . 3 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ*)
35 elxr 12781 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3634, 35sylib 217 . 2 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3726, 31, 33, 36mpjao3dan 1429 1 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1084   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802   · cmul 10807  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940   ·e cxmu 12776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-xmul 12779
This theorem is referenced by:  xmulge0  12947  xmulasslem3  12949
  Copyright terms: Public domain W3C validator