MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulgt0 Structured version   Visualization version   GIF version

Theorem xmulgt0 12679
Description: Extended real version of mulgt0 10721. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulgt0 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))

Proof of Theorem xmulgt0
StepHypRef Expression
1 simpr 487 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴)
2 simpr 487 . . . . . 6 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → 0 < 𝐵)
31, 2anim12i 614 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (0 < 𝐴 ∧ 0 < 𝐵))
4 mulgt0 10721 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
54an4s 658 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
65ancoms 461 . . . . . 6 (((0 < 𝐴 ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 0 < (𝐴 · 𝐵))
7 rexmul 12667 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
87adantl 484 . . . . . 6 (((0 < 𝐴 ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
96, 8breqtrrd 5097 . . . . 5 (((0 < 𝐴 ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 0 < (𝐴 ·e 𝐵))
103, 9sylan 582 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 0 < (𝐴 ·e 𝐵))
1110anassrs 470 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 0 < (𝐴 ·e 𝐵))
12 0ltpnf 12520 . . . . 5 0 < +∞
13 oveq2 7167 . . . . . 6 (𝐵 = +∞ → (𝐴 ·e 𝐵) = (𝐴 ·e +∞))
14 xmulpnf1 12670 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
1514adantr 483 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (𝐴 ·e +∞) = +∞)
1613, 15sylan9eqr 2881 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐵) = +∞)
1712, 16breqtrrid 5107 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐵 = +∞) → 0 < (𝐴 ·e 𝐵))
1817adantlr 713 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → 0 < (𝐴 ·e 𝐵))
19 simplrr 776 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) → 0 < 𝐵)
20 xmulasslem2 12678 . . . 4 ((0 < 𝐵𝐵 = -∞) → 0 < (𝐴 ·e 𝐵))
2119, 20sylan 582 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → 0 < (𝐴 ·e 𝐵))
22 simprl 769 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ*)
23 elxr 12514 . . . . 5 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2422, 23sylib 220 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2524adantr 483 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2611, 18, 21, 25mpjao3dan 1427 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) → 0 < (𝐴 ·e 𝐵))
27 oveq1 7166 . . . 4 (𝐴 = +∞ → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
28 xmulpnf2 12671 . . . . 5 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
2928adantl 484 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (+∞ ·e 𝐵) = +∞)
3027, 29sylan9eqr 2881 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐵) = +∞)
3112, 30breqtrrid 5107 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 = +∞) → 0 < (𝐴 ·e 𝐵))
32 xmulasslem2 12678 . . 3 ((0 < 𝐴𝐴 = -∞) → 0 < (𝐴 ·e 𝐵))
3332ad4ant24 752 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 = -∞) → 0 < (𝐴 ·e 𝐵))
34 simpll 765 . . 3 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ*)
35 elxr 12514 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3634, 35sylib 220 . 2 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3726, 31, 33, 36mpjao3dan 1427 1 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3o 1082   = wceq 1536  wcel 2113   class class class wbr 5069  (class class class)co 7159  cr 10539  0cc0 10540   · cmul 10545  +∞cpnf 10675  -∞cmnf 10676  *cxr 10677   < clt 10678   ·e cxmu 12509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-xmul 12512
This theorem is referenced by:  xmulge0  12680  xmulasslem3  12682
  Copyright terms: Public domain W3C validator