MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulgt0 Structured version   Visualization version   GIF version

Theorem xmulgt0 12486
Description: Extended real version of mulgt0 10512. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulgt0 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))

Proof of Theorem xmulgt0
StepHypRef Expression
1 simpr 477 . . . . . 6 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴)
2 simpr 477 . . . . . 6 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → 0 < 𝐵)
31, 2anim12i 603 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (0 < 𝐴 ∧ 0 < 𝐵))
4 mulgt0 10512 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
54an4s 647 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
65ancoms 451 . . . . . 6 (((0 < 𝐴 ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 0 < (𝐴 · 𝐵))
7 rexmul 12474 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
87adantl 474 . . . . . 6 (((0 < 𝐴 ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
96, 8breqtrrd 4951 . . . . 5 (((0 < 𝐴 ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 0 < (𝐴 ·e 𝐵))
103, 9sylan 572 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 0 < (𝐴 ·e 𝐵))
1110anassrs 460 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 0 < (𝐴 ·e 𝐵))
12 0ltpnf 12328 . . . . 5 0 < +∞
13 oveq2 6978 . . . . . 6 (𝐵 = +∞ → (𝐴 ·e 𝐵) = (𝐴 ·e +∞))
14 xmulpnf1 12477 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
1514adantr 473 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (𝐴 ·e +∞) = +∞)
1613, 15sylan9eqr 2830 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐵) = +∞)
1712, 16syl5breqr 4961 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐵 = +∞) → 0 < (𝐴 ·e 𝐵))
1817adantlr 702 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → 0 < (𝐴 ·e 𝐵))
19 simplrr 765 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) → 0 < 𝐵)
20 xmulasslem2 12485 . . . 4 ((0 < 𝐵𝐵 = -∞) → 0 < (𝐴 ·e 𝐵))
2119, 20sylan 572 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → 0 < (𝐴 ·e 𝐵))
22 simprl 758 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ*)
23 elxr 12322 . . . . 5 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2422, 23sylib 210 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2524adantr 473 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2611, 18, 21, 25mpjao3dan 1411 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 ∈ ℝ) → 0 < (𝐴 ·e 𝐵))
27 oveq1 6977 . . . 4 (𝐴 = +∞ → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
28 xmulpnf2 12478 . . . . 5 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
2928adantl 474 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (+∞ ·e 𝐵) = +∞)
3027, 29sylan9eqr 2830 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐵) = +∞)
3112, 30syl5breqr 4961 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 = +∞) → 0 < (𝐴 ·e 𝐵))
32 xmulasslem2 12485 . . 3 ((0 < 𝐴𝐴 = -∞) → 0 < (𝐴 ·e 𝐵))
3332ad4ant24 741 . 2 ((((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) ∧ 𝐴 = -∞) → 0 < (𝐴 ·e 𝐵))
34 simpll 754 . . 3 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 𝐴 ∈ ℝ*)
35 elxr 12322 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3634, 35sylib 210 . 2 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3726, 31, 33, 36mpjao3dan 1411 1 (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3o 1067   = wceq 1507  wcel 2050   class class class wbr 4923  (class class class)co 6970  cr 10328  0cc0 10329   · cmul 10334  +∞cpnf 10465  -∞cmnf 10466  *cxr 10467   < clt 10468   ·e cxmu 12317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5306  df-po 5320  df-so 5321  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-xmul 12320
This theorem is referenced by:  xmulge0  12487  xmulasslem3  12489
  Copyright terms: Public domain W3C validator