MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltpnfd Structured version   Visualization version   GIF version

Theorem ltpnfd 13081
Description: Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
ltpnfd.a (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
ltpnfd (𝜑𝐴 < +∞)

Proof of Theorem ltpnfd
StepHypRef Expression
1 ltpnfd.a . 2 (𝜑𝐴 ∈ ℝ)
2 ltpnf 13080 . 2 (𝐴 ∈ ℝ → 𝐴 < +∞)
31, 2syl 17 1 (𝜑𝐴 < +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5107  cr 11067  +∞cpnf 11205   < clt 11208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-pnf 11210  df-xr 11212  df-ltxr 11213
This theorem is referenced by:  qbtwnxr  13160  xltnegi  13176  hashnnn0genn0  14308  limsupgre  15447  fprodge1  15961  xblss2ps  24289  blcvx  24686  reconnlem1  24715  iccpnfhmeo  24843  uniioombllem1  25482  ismbf3d  25555  mbflimsup  25567  itg2seq  25643  lhop2  25920  dvfsumlem2  25933  dvfsumlem2OLD  25934  logccv  26572  xrlimcnp  26878  pntleme  27519  absfico  45212  supxrge  45334  infxr  45363  infleinflem2  45367  xrralrecnnge  45386  iocopn  45518  ge0lere  45530  ressiooinf  45555  uzinico  45557  uzubioo  45563  fsumge0cl  45571  limcicciooub  45635  limcresiooub  45640  limcleqr  45642  limsupresico  45698  limsuppnfdlem  45699  limsupmnflem  45718  liminfresico  45769  limsup10exlem  45770  xlimpnfvlem1  45834  icccncfext  45885  fourierdlem31  46136  fourierdlem33  46138  fourierdlem46  46150  fourierdlem48  46152  fourierdlem49  46153  fourierdlem75  46179  fourierdlem85  46189  fourierdlem88  46192  fourierdlem95  46199  fourierdlem103  46207  fourierdlem104  46208  fourierdlem107  46211  fourierdlem109  46213  fourierdlem112  46216  fouriersw  46229  ioorrnopnxrlem  46304  sge0tsms  46378  sge0isum  46425  sge0ad2en  46429  sge0xaddlem2  46432  voliunsge0lem  46470  meassre  46475  omessre  46508  omeiunltfirp  46517  hoiprodcl  46545  ovnsubaddlem1  46568  hoiprodcl3  46578  hoidmvcl  46580  sge0hsphoire  46587  hoidmv1lelem1  46589  hoidmv1lelem2  46590  hoidmv1lelem3  46591  hoidmv1le  46592  hoidmvlelem1  46593  hoidmvlelem3  46595  hoidmvlelem4  46596  volicorege0  46635  ovolval5lem1  46650
  Copyright terms: Public domain W3C validator