| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltpnfd | Structured version Visualization version GIF version | ||
| Description: Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltpnfd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ltpnfd | ⊢ (𝜑 → 𝐴 < +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltpnfd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltpnf 13162 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 < +∞) |
| Copyright terms: Public domain | W3C validator |