MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltpnfd Structured version   Visualization version   GIF version

Theorem ltpnfd 13160
Description: Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
ltpnfd.a (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
ltpnfd (𝜑𝐴 < +∞)

Proof of Theorem ltpnfd
StepHypRef Expression
1 ltpnfd.a . 2 (𝜑𝐴 ∈ ℝ)
2 ltpnf 13159 . 2 (𝐴 ∈ ℝ → 𝐴 < +∞)
31, 2syl 17 1 (𝜑𝐴 < +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105   class class class wbr 5147  cr 11151  +∞cpnf 11289   < clt 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-xp 5694  df-pnf 11294  df-xr 11296  df-ltxr 11297
This theorem is referenced by:  qbtwnxr  13238  xltnegi  13254  hashnnn0genn0  14378  limsupgre  15513  fprodge1  16027  xblss2ps  24426  blcvx  24833  reconnlem1  24861  iccpnfhmeo  24989  uniioombllem1  25629  ismbf3d  25702  mbflimsup  25714  itg2seq  25791  lhop2  26068  dvfsumlem2  26081  dvfsumlem2OLD  26082  logccv  26719  xrlimcnp  27025  pntleme  27666  absfico  45160  supxrge  45287  infxr  45316  infleinflem2  45320  xrralrecnnge  45339  iocopn  45472  ge0lere  45484  ressiooinf  45509  uzinico  45512  uzubioo  45519  fsumge0cl  45528  limcicciooub  45592  limcresiooub  45597  limcleqr  45599  limsupresico  45655  limsuppnfdlem  45656  limsupmnflem  45675  liminfresico  45726  limsup10exlem  45727  xlimpnfvlem1  45791  icccncfext  45842  fourierdlem31  46093  fourierdlem33  46095  fourierdlem46  46107  fourierdlem48  46109  fourierdlem49  46110  fourierdlem75  46136  fourierdlem85  46146  fourierdlem88  46149  fourierdlem95  46156  fourierdlem103  46164  fourierdlem104  46165  fourierdlem107  46168  fourierdlem109  46170  fourierdlem112  46173  fouriersw  46186  ioorrnopnxrlem  46261  sge0tsms  46335  sge0isum  46382  sge0ad2en  46386  sge0xaddlem2  46389  voliunsge0lem  46427  meassre  46432  omessre  46465  omeiunltfirp  46474  hoiprodcl  46502  ovnsubaddlem1  46525  hoiprodcl3  46535  hoidmvcl  46537  sge0hsphoire  46544  hoidmv1lelem1  46546  hoidmv1lelem2  46547  hoidmv1lelem3  46548  hoidmv1le  46549  hoidmvlelem1  46550  hoidmvlelem3  46552  hoidmvlelem4  46553  volicorege0  46592  ovolval5lem1  46607
  Copyright terms: Public domain W3C validator