MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltpnfd Structured version   Visualization version   GIF version

Theorem ltpnfd 13136
Description: Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
ltpnfd.a (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
ltpnfd (𝜑𝐴 < +∞)

Proof of Theorem ltpnfd
StepHypRef Expression
1 ltpnfd.a . 2 (𝜑𝐴 ∈ ℝ)
2 ltpnf 13135 . 2 (𝐴 ∈ ℝ → 𝐴 < +∞)
31, 2syl 17 1 (𝜑𝐴 < +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098   class class class wbr 5149  cr 11139  +∞cpnf 11277   < clt 11280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5684  df-pnf 11282  df-xr 11284  df-ltxr 11285
This theorem is referenced by:  qbtwnxr  13214  xltnegi  13230  hashnnn0genn0  14338  limsupgre  15461  fprodge1  15975  xblss2ps  24351  blcvx  24758  reconnlem1  24786  iccpnfhmeo  24914  uniioombllem1  25554  ismbf3d  25627  mbflimsup  25639  itg2seq  25716  lhop2  25992  dvfsumlem2  26005  dvfsumlem2OLD  26006  logccv  26642  xrlimcnp  26945  pntleme  27586  absfico  44730  supxrge  44858  infxr  44887  infleinflem2  44891  xrralrecnnge  44910  iocopn  45043  ge0lere  45055  ressiooinf  45080  uzinico  45083  uzubioo  45090  fsumge0cl  45099  limcicciooub  45163  limcresiooub  45168  limcleqr  45170  limsupresico  45226  limsuppnfdlem  45227  limsupmnflem  45246  liminfresico  45297  limsup10exlem  45298  xlimpnfvlem1  45362  icccncfext  45413  fourierdlem31  45664  fourierdlem33  45666  fourierdlem46  45678  fourierdlem48  45680  fourierdlem49  45681  fourierdlem75  45707  fourierdlem85  45717  fourierdlem88  45720  fourierdlem95  45727  fourierdlem103  45735  fourierdlem104  45736  fourierdlem107  45739  fourierdlem109  45741  fourierdlem112  45744  fouriersw  45757  ioorrnopnxrlem  45832  sge0tsms  45906  sge0isum  45953  sge0ad2en  45957  sge0xaddlem2  45960  voliunsge0lem  45998  meassre  46003  omessre  46036  omeiunltfirp  46045  hoiprodcl  46073  ovnsubaddlem1  46096  hoiprodcl3  46106  hoidmvcl  46108  sge0hsphoire  46115  hoidmv1lelem1  46117  hoidmv1lelem2  46118  hoidmv1lelem3  46119  hoidmv1le  46120  hoidmvlelem1  46121  hoidmvlelem3  46123  hoidmvlelem4  46124  volicorege0  46163  ovolval5lem1  46178
  Copyright terms: Public domain W3C validator