MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltpnfd Structured version   Visualization version   GIF version

Theorem ltpnfd 12786
Description: Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
ltpnfd.a (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
ltpnfd (𝜑𝐴 < +∞)

Proof of Theorem ltpnfd
StepHypRef Expression
1 ltpnfd.a . 2 (𝜑𝐴 ∈ ℝ)
2 ltpnf 12785 . 2 (𝐴 ∈ ℝ → 𝐴 < +∞)
31, 2syl 17 1 (𝜑𝐴 < +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5070  cr 10801  +∞cpnf 10937   < clt 10940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-pnf 10942  df-xr 10944  df-ltxr 10945
This theorem is referenced by:  qbtwnxr  12863  xltnegi  12879  hashnnn0genn0  13985  limsupgre  15118  fprodge1  15633  xblss2ps  23462  blcvx  23867  reconnlem1  23895  iccpnfhmeo  24014  uniioombllem1  24650  ismbf3d  24723  mbflimsup  24735  itg2seq  24812  lhop2  25084  dvfsumlem2  25096  logccv  25723  xrlimcnp  26023  pntleme  26661  absfico  42647  supxrge  42767  infxr  42796  infleinflem2  42800  xrralrecnnge  42820  iocopn  42948  ge0lere  42960  ressiooinf  42985  uzinico  42988  uzubioo  42995  fsumge0cl  43004  limcicciooub  43068  limcresiooub  43073  limcleqr  43075  limsupresico  43131  limsuppnfdlem  43132  limsupmnflem  43151  liminfresico  43202  limsup10exlem  43203  xlimpnfvlem1  43267  icccncfext  43318  fourierdlem31  43569  fourierdlem33  43571  fourierdlem46  43583  fourierdlem48  43585  fourierdlem49  43586  fourierdlem75  43612  fourierdlem85  43622  fourierdlem88  43625  fourierdlem95  43632  fourierdlem103  43640  fourierdlem104  43641  fourierdlem107  43644  fourierdlem109  43646  fourierdlem112  43649  fouriersw  43662  ioorrnopnxrlem  43737  sge0tsms  43808  sge0isum  43855  sge0ad2en  43859  sge0xaddlem2  43862  voliunsge0lem  43900  meassre  43905  omessre  43938  omeiunltfirp  43947  hoiprodcl  43975  ovnsubaddlem1  43998  hoiprodcl3  44008  hoidmvcl  44010  sge0hsphoire  44017  hoidmv1lelem1  44019  hoidmv1lelem2  44020  hoidmv1lelem3  44021  hoidmv1le  44022  hoidmvlelem1  44023  hoidmvlelem3  44025  hoidmvlelem4  44026  volicorege0  44065  ovolval5lem1  44080  pimgtpnf2  44131
  Copyright terms: Public domain W3C validator