Step | Hyp | Ref
| Expression |
1 | | eleq1 2827 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (𝑘 ∈ ℕ ↔ 𝑛 ∈ ℕ)) |
2 | 1 | anbi2d 629 |
. . . . 5
⊢ (𝑘 = 𝑛 → ((𝜑 ∧ 𝑘 ∈ ℕ) ↔ (𝜑 ∧ 𝑛 ∈ ℕ))) |
3 | | fveq2 6783 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (𝑆‘𝑘) = (𝑆‘𝑛)) |
4 | | fveq2 6783 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐷‘𝑘) = (𝐷‘𝑛)) |
5 | 4 | fveq1d 6785 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((𝐷‘𝑘)‘(𝑡 − 𝑋)) = ((𝐷‘𝑛)‘(𝑡 − 𝑋))) |
6 | 5 | oveq2d 7300 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑡) · ((𝐷‘𝑘)‘(𝑡 − 𝑋))) = ((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋)))) |
7 | 6 | adantr 481 |
. . . . . . 7
⊢ ((𝑘 = 𝑛 ∧ 𝑡 ∈ (-π(,)π)) → ((𝐹‘𝑡) · ((𝐷‘𝑘)‘(𝑡 − 𝑋))) = ((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋)))) |
8 | 7 | itgeq2dv 24955 |
. . . . . 6
⊢ (𝑘 = 𝑛 → ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑘)‘(𝑡 − 𝑋))) d𝑡 = ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡) |
9 | 3, 8 | eqeq12d 2755 |
. . . . 5
⊢ (𝑘 = 𝑛 → ((𝑆‘𝑘) = ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑘)‘(𝑡 − 𝑋))) d𝑡 ↔ (𝑆‘𝑛) = ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡)) |
10 | 2, 9 | imbi12d 345 |
. . . 4
⊢ (𝑘 = 𝑛 → (((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) = ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑘)‘(𝑡 − 𝑋))) d𝑡) ↔ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑆‘𝑛) = ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡))) |
11 | | fourierdlem111.6 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
12 | 11 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐹:ℝ⟶ℝ) |
13 | | eqid 2739 |
. . . . 5
⊢
(-π(,)π) = (-π(,)π) |
14 | | ioossre 13149 |
. . . . . . . . 9
⊢
(-π(,)π) ⊆ ℝ |
15 | 14 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (-π(,)π) ⊆
ℝ) |
16 | 11, 15 | feqresmpt 6847 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ↾ (-π(,)π)) = (𝑥 ∈ (-π(,)π) ↦
(𝐹‘𝑥))) |
17 | | ioossicc 13174 |
. . . . . . . . 9
⊢
(-π(,)π) ⊆ (-π[,]π) |
18 | 17 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (-π(,)π) ⊆
(-π[,]π)) |
19 | | ioombl 24738 |
. . . . . . . . 9
⊢
(-π(,)π) ∈ dom vol |
20 | 19 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (-π(,)π) ∈ dom
vol) |
21 | 11 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ) |
22 | | pire 25624 |
. . . . . . . . . . . . . . 15
⊢ π
∈ ℝ |
23 | 22 | renegcli 11291 |
. . . . . . . . . . . . . 14
⊢ -π
∈ ℝ |
24 | 23, 22 | elicc2i 13154 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (-π[,]π) ↔
(𝑡 ∈ ℝ ∧
-π ≤ 𝑡 ∧ 𝑡 ≤ π)) |
25 | 24 | simp1bi 1144 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (-π[,]π) →
𝑡 ∈
ℝ) |
26 | 25 | ssriv 3926 |
. . . . . . . . . . 11
⊢
(-π[,]π) ⊆ ℝ |
27 | 26 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (-π[,]π) ⊆
ℝ) |
28 | 27 | sselda 3922 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π)) → 𝑥 ∈
ℝ) |
29 | 21, 28 | ffvelrnd 6971 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π)) → (𝐹‘𝑥) ∈ ℝ) |
30 | 11, 27 | feqresmpt 6847 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ↾ (-π[,]π)) = (𝑥 ∈ (-π[,]π) ↦
(𝐹‘𝑥))) |
31 | | fourierdlem111.p |
. . . . . . . . . 10
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
32 | | fourierdlem111.m |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℕ) |
33 | | fourierdlem111.q |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
34 | | ax-resscn 10937 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
35 | 34 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℝ ⊆
ℂ) |
36 | 11, 35 | fssd 6627 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
37 | 36, 27 | fssresd 6650 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ↾
(-π[,]π)):(-π[,]π)⟶ℂ) |
38 | | ioossicc 13174 |
. . . . . . . . . . . . 13
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
39 | 23 | rexri 11042 |
. . . . . . . . . . . . . . 15
⊢ -π
∈ ℝ* |
40 | 39 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -π ∈
ℝ*) |
41 | 22 | rexri 11042 |
. . . . . . . . . . . . . . 15
⊢ π
∈ ℝ* |
42 | 41 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → π ∈
ℝ*) |
43 | 31, 32, 33 | fourierdlem15 43670 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) |
44 | 43 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
45 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) |
46 | 40, 42, 44, 45 | fourierdlem8 43663 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
47 | 38, 46 | sstrid 3933 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
48 | 47 | resabs1d 5925 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
49 | | fourierdlem111.fcn |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
50 | 48, 49 | eqeltrd 2840 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
51 | | fourierdlem111.r |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
52 | 48 | oveq1d 7299 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
53 | 51, 52 | eleqtrrd 2843 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
54 | | fourierdlem111.l |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
55 | 48 | oveq1d 7299 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
56 | 54, 55 | eleqtrrd 2843 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
57 | 31, 32, 33, 37, 50, 53, 56 | fourierdlem69 43723 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ↾ (-π[,]π)) ∈
𝐿1) |
58 | 30, 57 | eqeltrrd 2841 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (-π[,]π) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
59 | 18, 20, 29, 58 | iblss 24978 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (-π(,)π) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
60 | 16, 59 | eqeltrd 2840 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ (-π(,)π)) ∈
𝐿1) |
61 | 60 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹 ↾ (-π(,)π)) ∈
𝐿1) |
62 | | fourierdlem111.a |
. . . . 5
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦
(∫(-π(,)π)((𝐹‘𝑡) · (cos‘(𝑛 · 𝑡))) d𝑡 / π)) |
63 | | fourierdlem111.b |
. . . . 5
⊢ 𝐵 = (𝑛 ∈ ℕ ↦
(∫(-π(,)π)((𝐹‘𝑡) · (sin‘(𝑛 · 𝑡))) d𝑡 / π)) |
64 | | fourierdlem111.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℝ) |
65 | 64 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑋 ∈ ℝ) |
66 | | fourierdlem111.s |
. . . . 5
⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))))) |
67 | | fourierdlem111.d |
. . . . 5
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 /
2))))))) |
68 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
69 | 12, 13, 61, 62, 63, 65, 66, 67, 68 | fourierdlem83 43737 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) = ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑘)‘(𝑡 − 𝑋))) d𝑡) |
70 | 10, 69 | chvarvv 2003 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑆‘𝑛) = ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡) |
71 | 23 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → -π ∈
ℝ) |
72 | 22 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → π ∈
ℝ) |
73 | 36 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℂ) |
74 | 25 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → 𝑡 ∈
ℝ) |
75 | 73, 74 | ffvelrnd 6971 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → (𝐹‘𝑡) ∈ ℂ) |
76 | 75 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ (-π[,]π)) → (𝐹‘𝑡) ∈ ℂ) |
77 | 67 | dirkerf 43645 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → (𝐷‘𝑛):ℝ⟶ℝ) |
78 | 77 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ (-π[,]π)) → (𝐷‘𝑛):ℝ⟶ℝ) |
79 | 64 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → 𝑋 ∈
ℝ) |
80 | 74, 79 | resubcld 11412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → (𝑡 − 𝑋) ∈ ℝ) |
81 | 80 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ (-π[,]π)) → (𝑡 − 𝑋) ∈ ℝ) |
82 | 78, 81 | ffvelrnd 6971 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ (-π[,]π)) → ((𝐷‘𝑛)‘(𝑡 − 𝑋)) ∈ ℝ) |
83 | 82 | recnd 11012 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ (-π[,]π)) → ((𝐷‘𝑛)‘(𝑡 − 𝑋)) ∈ ℂ) |
84 | 76, 83 | mulcld 11004 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ (-π[,]π)) → ((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) ∈ ℂ) |
85 | 71, 72, 84 | itgioo 24989 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡 = ∫(-π[,]π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡) |
86 | | fvres 6802 |
. . . . . . . 8
⊢ (𝑡 ∈ (-π[,]π) →
((𝐹 ↾
(-π[,]π))‘𝑡) =
(𝐹‘𝑡)) |
87 | 86 | eqcomd 2745 |
. . . . . . 7
⊢ (𝑡 ∈ (-π[,]π) →
(𝐹‘𝑡) = ((𝐹 ↾ (-π[,]π))‘𝑡)) |
88 | 87 | oveq1d 7299 |
. . . . . 6
⊢ (𝑡 ∈ (-π[,]π) →
((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) = (((𝐹 ↾ (-π[,]π))‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋)))) |
89 | 88 | adantl 482 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ (-π[,]π)) → ((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) = (((𝐹 ↾ (-π[,]π))‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋)))) |
90 | 89 | itgeq2dv 24955 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π[,]π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡 = ∫(-π[,]π)(((𝐹 ↾ (-π[,]π))‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡) |
91 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → 𝑛 = 𝑚) |
92 | 91 | oveq2d 7300 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → (2 · 𝑛) = (2 · 𝑚)) |
93 | 92 | oveq1d 7299 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → ((2 · 𝑛) + 1) = ((2 · 𝑚) + 1)) |
94 | 93 | oveq1d 7299 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → (((2 · 𝑛) + 1) / (2 · π)) =
(((2 · 𝑚) + 1) / (2
· π))) |
95 | 91 | oveq1d 7299 |
. . . . . . . . . . . . 13
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → (𝑛 + (1 / 2)) = (𝑚 + (1 / 2))) |
96 | 95 | oveq1d 7299 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → ((𝑛 + (1 / 2)) · 𝑦) = ((𝑚 + (1 / 2)) · 𝑦)) |
97 | 96 | fveq2d 6787 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → (sin‘((𝑛 + (1 / 2)) · 𝑦)) = (sin‘((𝑚 + (1 / 2)) · 𝑦))) |
98 | 97 | oveq1d 7299 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 / 2)))) =
((sin‘((𝑚 + (1 / 2))
· 𝑦)) / ((2 ·
π) · (sin‘(𝑦 / 2))))) |
99 | 94, 98 | ifeq12d 4481 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 / 2))))) =
if((𝑦 mod (2 ·
π)) = 0, (((2 · 𝑚) + 1) / (2 · π)),
((sin‘((𝑚 + (1 / 2))
· 𝑦)) / ((2 ·
π) · (sin‘(𝑦 / 2)))))) |
100 | 99 | mpteq2dva 5175 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 / 2)))))) =
(𝑦 ∈ ℝ ↦
if((𝑦 mod (2 ·
π)) = 0, (((2 · 𝑚) + 1) / (2 · π)),
((sin‘((𝑚 + (1 / 2))
· 𝑦)) / ((2 ·
π) · (sin‘(𝑦 / 2))))))) |
101 | 100 | cbvmptv 5188 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦
if((𝑦 mod (2 ·
π)) = 0, (((2 · 𝑛) + 1) / (2 · π)),
((sin‘((𝑛 + (1 / 2))
· 𝑦)) / ((2 ·
π) · (sin‘(𝑦 / 2))))))) = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑚) + 1) / (2
· π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 /
2))))))) |
102 | 67, 101 | eqtri 2767 |
. . . . . 6
⊢ 𝐷 = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑚) + 1) / (2
· π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 /
2))))))) |
103 | | fveq2 6783 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → ((𝐹 ↾ (-π[,]π))‘𝑠) = ((𝐹 ↾ (-π[,]π))‘𝑡)) |
104 | | oveq1 7291 |
. . . . . . . . 9
⊢ (𝑠 = 𝑡 → (𝑠 − 𝑋) = (𝑡 − 𝑋)) |
105 | 104 | fveq2d 6787 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → ((𝐷‘𝑛)‘(𝑠 − 𝑋)) = ((𝐷‘𝑛)‘(𝑡 − 𝑋))) |
106 | 103, 105 | oveq12d 7302 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → (((𝐹 ↾ (-π[,]π))‘𝑠) · ((𝐷‘𝑛)‘(𝑠 − 𝑋))) = (((𝐹 ↾ (-π[,]π))‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋)))) |
107 | 106 | cbvmptv 5188 |
. . . . . 6
⊢ (𝑠 ∈ (-π[,]π) ↦
(((𝐹 ↾
(-π[,]π))‘𝑠)
· ((𝐷‘𝑛)‘(𝑠 − 𝑋)))) = (𝑡 ∈ (-π[,]π) ↦ (((𝐹 ↾
(-π[,]π))‘𝑡)
· ((𝐷‘𝑛)‘(𝑡 − 𝑋)))) |
108 | 33 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑄 ∈ (𝑃‘𝑀)) |
109 | 32 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ ℕ) |
110 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
111 | 64 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ ℝ) |
112 | 37 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹 ↾
(-π[,]π)):(-π[,]π)⟶ℂ) |
113 | 50 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
114 | 53 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
115 | 56 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
116 | 102, 31, 107, 108, 109, 110, 111, 112, 113, 114, 115 | fourierdlem101 43755 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π[,]π)(((𝐹
↾ (-π[,]π))‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(((𝐹 ↾ (-π[,]π))‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦) |
117 | | oveq2 7292 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑦 → (𝑋 + 𝑠) = (𝑋 + 𝑦)) |
118 | 117 | fveq2d 6787 |
. . . . . . . . 9
⊢ (𝑠 = 𝑦 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑦))) |
119 | | fveq2 6783 |
. . . . . . . . 9
⊢ (𝑠 = 𝑦 → ((𝐷‘𝑛)‘𝑠) = ((𝐷‘𝑛)‘𝑦)) |
120 | 118, 119 | oveq12d 7302 |
. . . . . . . 8
⊢ (𝑠 = 𝑦 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = ((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦))) |
121 | 120 | cbvitgv 24950 |
. . . . . . 7
⊢
∫((-π − 𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 = ∫((-π − 𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦 |
122 | 121 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 = ∫((-π − 𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦) |
123 | 23 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → -π ∈
ℝ) |
124 | 123, 64 | resubcld 11412 |
. . . . . . . 8
⊢ (𝜑 → (-π − 𝑋) ∈
ℝ) |
125 | 124 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (-π − 𝑋) ∈
ℝ) |
126 | 22 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → π ∈
ℝ) |
127 | 126, 64 | resubcld 11412 |
. . . . . . . 8
⊢ (𝜑 → (π − 𝑋) ∈
ℝ) |
128 | 127 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (π − 𝑋) ∈
ℝ) |
129 | 36 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝐹:ℝ⟶ℂ) |
130 | 64 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑋 ∈ ℝ) |
131 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) |
132 | 124 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (-π − 𝑋) ∈ ℝ) |
133 | 127 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (π − 𝑋) ∈ ℝ) |
134 | | elicc2 13153 |
. . . . . . . . . . . . . 14
⊢ (((-π
− 𝑋) ∈ ℝ
∧ (π − 𝑋)
∈ ℝ) → (𝑦
∈ ((-π − 𝑋)[,](π − 𝑋)) ↔ (𝑦 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑦 ∧ 𝑦 ≤ (π − 𝑋)))) |
135 | 132, 133,
134 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋)) ↔ (𝑦 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑦 ∧ 𝑦 ≤ (π − 𝑋)))) |
136 | 131, 135 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑦 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑦 ∧ 𝑦 ≤ (π − 𝑋))) |
137 | 136 | simp1d 1141 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑦 ∈ ℝ) |
138 | 130, 137 | readdcld 11013 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑦) ∈ ℝ) |
139 | 129, 138 | ffvelrnd 6971 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐹‘(𝑋 + 𝑦)) ∈ ℂ) |
140 | 139 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐹‘(𝑋 + 𝑦)) ∈ ℂ) |
141 | 77 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐷‘𝑛):ℝ⟶ℝ) |
142 | 137 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑦 ∈ ℝ) |
143 | 141, 142 | ffvelrnd 6971 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐷‘𝑛)‘𝑦) ∈ ℝ) |
144 | 143 | recnd 11012 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐷‘𝑛)‘𝑦) ∈ ℂ) |
145 | 140, 144 | mulcld 11004 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) ∈ ℂ) |
146 | 125, 128,
145 | itgioo 24989 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦 = ∫((-π − 𝑋)[,](π − 𝑋))((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦) |
147 | 23 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π ∈
ℝ) |
148 | 22 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → π ∈
ℝ) |
149 | 64 | recnd 11012 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈ ℂ) |
150 | 126 | recnd 11012 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → π ∈
ℂ) |
151 | 150 | negcld 11328 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → -π ∈
ℂ) |
152 | 149, 151 | pncan3d 11344 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑋 + (-π − 𝑋)) = -π) |
153 | 152 | eqcomd 2745 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → -π = (𝑋 + (-π − 𝑋))) |
154 | 153 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π = (𝑋 + (-π − 𝑋))) |
155 | 136 | simp2d 1142 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (-π − 𝑋) ≤ 𝑦) |
156 | 132, 137,
130, 155 | leadd2dd 11599 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + (-π − 𝑋)) ≤ (𝑋 + 𝑦)) |
157 | 154, 156 | eqbrtrd 5097 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π ≤ (𝑋 + 𝑦)) |
158 | 136 | simp3d 1143 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑦 ≤ (π − 𝑋)) |
159 | 137, 133,
130, 158 | leadd2dd 11599 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑦) ≤ (𝑋 + (π − 𝑋))) |
160 | 149 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑋 ∈ ℂ) |
161 | 150 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → π ∈
ℂ) |
162 | 160, 161 | pncan3d 11344 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + (π − 𝑋)) = π) |
163 | 159, 162 | breqtrd 5101 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑦) ≤ π) |
164 | 147, 148,
138, 157, 163 | eliccd 43049 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑦) ∈ (-π[,]π)) |
165 | | fvres 6802 |
. . . . . . . . . . 11
⊢ ((𝑋 + 𝑦) ∈ (-π[,]π) → ((𝐹 ↾
(-π[,]π))‘(𝑋 +
𝑦)) = (𝐹‘(𝑋 + 𝑦))) |
166 | 164, 165 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐹 ↾ (-π[,]π))‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑦))) |
167 | 166 | eqcomd 2745 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐹‘(𝑋 + 𝑦)) = ((𝐹 ↾ (-π[,]π))‘(𝑋 + 𝑦))) |
168 | 167 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐹‘(𝑋 + 𝑦)) = ((𝐹 ↾ (-π[,]π))‘(𝑋 + 𝑦))) |
169 | 168 | oveq1d 7299 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) = (((𝐹 ↾ (-π[,]π))‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦))) |
170 | 169 | itgeq2dv 24955 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)[,](π − 𝑋))((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦 = ∫((-π − 𝑋)[,](π − 𝑋))(((𝐹 ↾ (-π[,]π))‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦) |
171 | 122, 146,
170 | 3eqtrrd 2784 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)[,](π − 𝑋))(((𝐹 ↾ (-π[,]π))‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦 = ∫((-π − 𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
172 | 116, 171 | eqtrd 2779 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π[,]π)(((𝐹
↾ (-π[,]π))‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡 = ∫((-π − 𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
173 | 85, 90, 172 | 3eqtrd 2783 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡 = ∫((-π − 𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
174 | | elioore 13118 |
. . . . . . . . 9
⊢ (𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋)) → 𝑠 ∈ ℝ) |
175 | 174 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → 𝑠 ∈ ℝ) |
176 | 36 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → 𝐹:ℝ⟶ℂ) |
177 | 64 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → 𝑋 ∈ ℝ) |
178 | 174 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → 𝑠 ∈ ℝ) |
179 | 177, 178 | readdcld 11013 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → (𝑋 + 𝑠) ∈ ℝ) |
180 | 176, 179 | ffvelrnd 6971 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
181 | 180 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
182 | 77 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → (𝐷‘𝑛):ℝ⟶ℝ) |
183 | 182, 175 | ffvelrnd 6971 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → ((𝐷‘𝑛)‘𝑠) ∈ ℝ) |
184 | 183 | recnd 11012 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → ((𝐷‘𝑛)‘𝑠) ∈ ℂ) |
185 | 181, 184 | mulcld 11004 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) |
186 | | fourierdlem111.g |
. . . . . . . . . 10
⊢ 𝐺 = (𝑥 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥))) |
187 | | oveq2 7292 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → (𝑋 + 𝑥) = (𝑋 + 𝑠)) |
188 | 187 | fveq2d 6787 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘(𝑋 + 𝑠))) |
189 | | fveq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → ((𝐷‘𝑛)‘𝑥) = ((𝐷‘𝑛)‘𝑠)) |
190 | 188, 189 | oveq12d 7302 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑠 → ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
191 | 190 | cbvmptv 5188 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥))) = (𝑠 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
192 | 186, 191 | eqtri 2767 |
. . . . . . . . 9
⊢ 𝐺 = (𝑠 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
193 | 192 | fvmpt2 6895 |
. . . . . . . 8
⊢ ((𝑠 ∈ ℝ ∧ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) → (𝐺‘𝑠) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
194 | 175, 185,
193 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → (𝐺‘𝑠) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
195 | 194 | eqcomd 2745 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = (𝐺‘𝑠)) |
196 | 195 | itgeq2dv 24955 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 = ∫((-π − 𝑋)(,)(π − 𝑋))(𝐺‘𝑠) d𝑠) |
197 | 36 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶ℂ) |
198 | 64 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑋 ∈ ℝ) |
199 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
200 | 198, 199 | readdcld 11013 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑋 + 𝑥) ∈ ℝ) |
201 | 197, 200 | ffvelrnd 6971 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑋 + 𝑥)) ∈ ℂ) |
202 | 201 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑋 + 𝑥)) ∈ ℂ) |
203 | 77 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛):ℝ⟶ℝ) |
204 | 203 | ffvelrnda 6970 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑛)‘𝑥) ∈ ℝ) |
205 | 204 | recnd 11012 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑛)‘𝑥) ∈ ℂ) |
206 | 202, 205 | mulcld 11004 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥)) ∈ ℂ) |
207 | 206, 186 | fmptd 6997 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐺:ℝ⟶ℂ) |
208 | 207 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝐺:ℝ⟶ℂ) |
209 | 124 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (-π − 𝑋) ∈ ℝ) |
210 | 127 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (π − 𝑋) ∈ ℝ) |
211 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) |
212 | | eliccre 43050 |
. . . . . . . . . 10
⊢ (((-π
− 𝑋) ∈ ℝ
∧ (π − 𝑋)
∈ ℝ ∧ 𝑠
∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℝ) |
213 | 209, 210,
211, 212 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℝ) |
214 | 213 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℝ) |
215 | 208, 214 | ffvelrnd 6971 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐺‘𝑠) ∈ ℂ) |
216 | 125, 128,
215 | itgioo 24989 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)(,)(π − 𝑋))(𝐺‘𝑠) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘𝑠) d𝑠) |
217 | | fveq2 6783 |
. . . . . . 7
⊢ (𝑠 = 𝑥 → (𝐺‘𝑠) = (𝐺‘𝑥)) |
218 | 217 | cbvitgv 24950 |
. . . . . 6
⊢
∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘𝑠) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘𝑥) d𝑥 |
219 | 216, 218 | eqtrdi 2795 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)(,)(π − 𝑋))(𝐺‘𝑠) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘𝑥) d𝑥) |
220 | 196, 219 | eqtrd 2779 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘𝑥) d𝑥) |
221 | | eqid 2739 |
. . . . . . 7
⊢ ((π
− 𝑋) − (-π
− 𝑋)) = ((π
− 𝑋) − (-π
− 𝑋)) |
222 | 111 | renegcld 11411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → -𝑋 ∈ ℝ) |
223 | | fourierdlem111.o |
. . . . . . 7
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (-π − 𝑋) ∧ (𝑝‘𝑚) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
224 | 31 | fourierdlem2 43657 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
225 | 32, 224 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
226 | 33, 225 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
227 | 226 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
228 | | elmapi 8646 |
. . . . . . . . . . . . . . 15
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) |
229 | 227, 228 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
230 | 229 | ffvelrnda 6970 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
231 | 64 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ) |
232 | 230, 231 | resubcld 11412 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑄‘𝑖) − 𝑋) ∈ ℝ) |
233 | | fourierdlem111.14 |
. . . . . . . . . . . 12
⊢ 𝑊 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋)) |
234 | 232, 233 | fmptd 6997 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊:(0...𝑀)⟶ℝ) |
235 | | reex 10971 |
. . . . . . . . . . . . 13
⊢ ℝ
∈ V |
236 | | ovex 7317 |
. . . . . . . . . . . . 13
⊢
(0...𝑀) ∈
V |
237 | 235, 236 | pm3.2i 471 |
. . . . . . . . . . . 12
⊢ (ℝ
∈ V ∧ (0...𝑀)
∈ V) |
238 | | elmapg 8637 |
. . . . . . . . . . . 12
⊢ ((ℝ
∈ V ∧ (0...𝑀)
∈ V) → (𝑊 ∈
(ℝ ↑m (0...𝑀)) ↔ 𝑊:(0...𝑀)⟶ℝ)) |
239 | 237, 238 | mp1i 13 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑊 ∈ (ℝ ↑m
(0...𝑀)) ↔ 𝑊:(0...𝑀)⟶ℝ)) |
240 | 234, 239 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ (ℝ ↑m
(0...𝑀))) |
241 | 233 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋))) |
242 | | fveq2 6783 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → (𝑄‘𝑖) = (𝑄‘0)) |
243 | 226 | simprd 496 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
244 | 243 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π)) |
245 | 244 | simpld 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘0) = -π) |
246 | 242, 245 | sylan9eqr 2801 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝑄‘𝑖) = -π) |
247 | 246 | oveq1d 7299 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑄‘𝑖) − 𝑋) = (-π − 𝑋)) |
248 | | 0zd 12340 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈
ℤ) |
249 | 32 | nnzd 12434 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℤ) |
250 | | 0red 10987 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → 0 ∈
ℝ) |
251 | | nnre 11989 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
252 | | nngt0 12013 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → 0 <
𝑀) |
253 | 250, 251,
252 | ltled 11132 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℕ → 0 ≤
𝑀) |
254 | 32, 253 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤ 𝑀) |
255 | | eluz2 12597 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈
(ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 ≤
𝑀)) |
256 | 248, 249,
254, 255 | syl3anbrc 1342 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
257 | | eluzfz1 13272 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑀)) |
258 | 256, 257 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
259 | 241, 247,
258, 124 | fvmptd 6891 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑊‘0) = (-π − 𝑋)) |
260 | | fveq2 6783 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑀 → (𝑄‘𝑖) = (𝑄‘𝑀)) |
261 | 244 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘𝑀) = π) |
262 | 260, 261 | sylan9eqr 2801 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 = 𝑀) → (𝑄‘𝑖) = π) |
263 | 262 | oveq1d 7299 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 = 𝑀) → ((𝑄‘𝑖) − 𝑋) = (π − 𝑋)) |
264 | | eluzfz2 13273 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈
(ℤ≥‘0) → 𝑀 ∈ (0...𝑀)) |
265 | 256, 264 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
266 | 241, 263,
265, 127 | fvmptd 6891 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑊‘𝑀) = (π − 𝑋)) |
267 | 259, 266 | jca 512 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑊‘0) = (-π − 𝑋) ∧ (𝑊‘𝑀) = (π − 𝑋))) |
268 | 229 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
269 | | elfzofz 13412 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
270 | 269 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
271 | 268, 270 | ffvelrnd 6971 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
272 | | fzofzp1 13493 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
273 | 272 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
274 | 268, 273 | ffvelrnd 6971 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
275 | 64 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ) |
276 | 243 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
277 | 276 | r19.21bi 3135 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
278 | 271, 274,
275, 277 | ltsub1dd 11596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − 𝑋) < ((𝑄‘(𝑖 + 1)) − 𝑋)) |
279 | 270, 232 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − 𝑋) ∈ ℝ) |
280 | 233 | fvmpt2 6895 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑄‘𝑖) − 𝑋) ∈ ℝ) → (𝑊‘𝑖) = ((𝑄‘𝑖) − 𝑋)) |
281 | 270, 279,
280 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) = ((𝑄‘𝑖) − 𝑋)) |
282 | | fveq2 6783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑗 → (𝑄‘𝑖) = (𝑄‘𝑗)) |
283 | 282 | oveq1d 7299 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖) − 𝑋) = ((𝑄‘𝑗) − 𝑋)) |
284 | 283 | cbvmptv 5188 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) − 𝑋)) |
285 | 233, 284 | eqtri 2767 |
. . . . . . . . . . . . . 14
⊢ 𝑊 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) − 𝑋)) |
286 | 285 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑊 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) − 𝑋))) |
287 | | fveq2 6783 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑖 + 1) → (𝑄‘𝑗) = (𝑄‘(𝑖 + 1))) |
288 | 287 | oveq1d 7299 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑖 + 1) → ((𝑄‘𝑗) − 𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋)) |
289 | 288 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑄‘𝑗) − 𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋)) |
290 | 274, 275 | resubcld 11412 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ) |
291 | 286, 289,
273, 290 | fvmptd 6891 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) = ((𝑄‘(𝑖 + 1)) − 𝑋)) |
292 | 278, 281,
291 | 3brtr4d 5107 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) < (𝑊‘(𝑖 + 1))) |
293 | 292 | ralrimiva 3104 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑊‘𝑖) < (𝑊‘(𝑖 + 1))) |
294 | 240, 267,
293 | jca32 516 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑊‘0) = (-π − 𝑋) ∧ (𝑊‘𝑀) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊‘𝑖) < (𝑊‘(𝑖 + 1))))) |
295 | 223 | fourierdlem2 43657 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → (𝑊 ∈ (𝑂‘𝑀) ↔ (𝑊 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑊‘0) = (-π − 𝑋) ∧ (𝑊‘𝑀) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊‘𝑖) < (𝑊‘(𝑖 + 1)))))) |
296 | 32, 295 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 ∈ (𝑂‘𝑀) ↔ (𝑊 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑊‘0) = (-π − 𝑋) ∧ (𝑊‘𝑀) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊‘𝑖) < (𝑊‘(𝑖 + 1)))))) |
297 | 294, 296 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ (𝑂‘𝑀)) |
298 | 297 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ (𝑂‘𝑀)) |
299 | 150, 151,
149 | nnncan2d 11376 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((π − 𝑋) − (-π − 𝑋)) = (π −
-π)) |
300 | | picn 25625 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℂ |
301 | 300 | 2timesi 12120 |
. . . . . . . . . . . . 13
⊢ (2
· π) = (π + π) |
302 | | fourierdlem111.t |
. . . . . . . . . . . . 13
⊢ 𝑇 = (2 ·
π) |
303 | 300, 300 | subnegi 11309 |
. . . . . . . . . . . . 13
⊢ (π
− -π) = (π + π) |
304 | 301, 302,
303 | 3eqtr4i 2777 |
. . . . . . . . . . . 12
⊢ 𝑇 = (π −
-π) |
305 | 299, 304 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝜑 → ((π − 𝑋) − (-π − 𝑋)) = 𝑇) |
306 | 305 | oveq2d 7300 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 + ((π − 𝑋) − (-π − 𝑋))) = (𝑥 + 𝑇)) |
307 | 306 | fveq2d 6787 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘(𝑥 + ((π − 𝑋) − (-π − 𝑋)))) = (𝐺‘(𝑥 + 𝑇))) |
308 | 307 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐺‘(𝑥 + ((π − 𝑋) − (-π − 𝑋)))) = (𝐺‘(𝑥 + 𝑇))) |
309 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
310 | 186 | fvmpt2 6895 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥)) ∈ ℂ) → (𝐺‘𝑥) = ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥))) |
311 | 309, 206,
310 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) = ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥))) |
312 | 149 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑋 ∈ ℂ) |
313 | 199 | recnd 11012 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
314 | | 2re 12056 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℝ |
315 | 314, 22 | remulcli 11000 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2
· π) ∈ ℝ |
316 | 302, 315 | eqeltri 2836 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑇 ∈ ℝ |
317 | 316 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 ∈ ℝ) |
318 | 317 | recnd 11012 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑇 ∈ ℂ) |
319 | 318 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℂ) |
320 | 312, 313,
319 | addassd 11006 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝑋 + 𝑥) + 𝑇) = (𝑋 + (𝑥 + 𝑇))) |
321 | 320 | eqcomd 2745 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑋 + (𝑥 + 𝑇)) = ((𝑋 + 𝑥) + 𝑇)) |
322 | 321 | fveq2d 6787 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑋 + (𝑥 + 𝑇))) = (𝐹‘((𝑋 + 𝑥) + 𝑇))) |
323 | | simpl 483 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝜑) |
324 | 323, 200 | jca 512 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝜑 ∧ (𝑋 + 𝑥) ∈ ℝ)) |
325 | | eleq1 2827 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝑋 + 𝑥) → (𝑠 ∈ ℝ ↔ (𝑋 + 𝑥) ∈ ℝ)) |
326 | 325 | anbi2d 629 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (𝑋 + 𝑥) → ((𝜑 ∧ 𝑠 ∈ ℝ) ↔ (𝜑 ∧ (𝑋 + 𝑥) ∈ ℝ))) |
327 | | oveq1 7291 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝑋 + 𝑥) → (𝑠 + 𝑇) = ((𝑋 + 𝑥) + 𝑇)) |
328 | 327 | fveq2d 6787 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝑋 + 𝑥) → (𝐹‘(𝑠 + 𝑇)) = (𝐹‘((𝑋 + 𝑥) + 𝑇))) |
329 | | fveq2 6783 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝑋 + 𝑥) → (𝐹‘𝑠) = (𝐹‘(𝑋 + 𝑥))) |
330 | 328, 329 | eqeq12d 2755 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (𝑋 + 𝑥) → ((𝐹‘(𝑠 + 𝑇)) = (𝐹‘𝑠) ↔ (𝐹‘((𝑋 + 𝑥) + 𝑇)) = (𝐹‘(𝑋 + 𝑥)))) |
331 | 326, 330 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑋 + 𝑥) → (((𝜑 ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑠 + 𝑇)) = (𝐹‘𝑠)) ↔ ((𝜑 ∧ (𝑋 + 𝑥) ∈ ℝ) → (𝐹‘((𝑋 + 𝑥) + 𝑇)) = (𝐹‘(𝑋 + 𝑥))))) |
332 | | eleq1 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑠 → (𝑥 ∈ ℝ ↔ 𝑠 ∈ ℝ)) |
333 | 332 | anbi2d 629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑠 → ((𝜑 ∧ 𝑥 ∈ ℝ) ↔ (𝜑 ∧ 𝑠 ∈ ℝ))) |
334 | | oveq1 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑠 → (𝑥 + 𝑇) = (𝑠 + 𝑇)) |
335 | 334 | fveq2d 6787 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑠 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑠 + 𝑇))) |
336 | | fveq2 6783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑠 → (𝐹‘𝑥) = (𝐹‘𝑠)) |
337 | 335, 336 | eqeq12d 2755 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑠 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘(𝑠 + 𝑇)) = (𝐹‘𝑠))) |
338 | 333, 337 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑠 → (((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑠 + 𝑇)) = (𝐹‘𝑠)))) |
339 | | fourierdlem111.fper |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
340 | 338, 339 | chvarvv 2003 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑠 + 𝑇)) = (𝐹‘𝑠)) |
341 | 331, 340 | vtoclg 3506 |
. . . . . . . . . . . . 13
⊢ ((𝑋 + 𝑥) ∈ ℝ → ((𝜑 ∧ (𝑋 + 𝑥) ∈ ℝ) → (𝐹‘((𝑋 + 𝑥) + 𝑇)) = (𝐹‘(𝑋 + 𝑥)))) |
342 | 200, 324,
341 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘((𝑋 + 𝑥) + 𝑇)) = (𝐹‘(𝑋 + 𝑥))) |
343 | 322, 342 | eqtr2d 2780 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘(𝑋 + (𝑥 + 𝑇)))) |
344 | 343 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘(𝑋 + (𝑥 + 𝑇)))) |
345 | 67, 302 | dirkerper 43644 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑛)‘(𝑥 + 𝑇)) = ((𝐷‘𝑛)‘𝑥)) |
346 | 345 | eqcomd 2745 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑛)‘𝑥) = ((𝐷‘𝑛)‘(𝑥 + 𝑇))) |
347 | 346 | adantll 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑛)‘𝑥) = ((𝐷‘𝑛)‘(𝑥 + 𝑇))) |
348 | 344, 347 | oveq12d 7302 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥)) = ((𝐹‘(𝑋 + (𝑥 + 𝑇))) · ((𝐷‘𝑛)‘(𝑥 + 𝑇)))) |
349 | 192 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐺 = (𝑠 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)))) |
350 | | oveq2 7292 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑥 + 𝑇) → (𝑋 + 𝑠) = (𝑋 + (𝑥 + 𝑇))) |
351 | 350 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑥 + 𝑇) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑥 + 𝑇)))) |
352 | | fveq2 6783 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑥 + 𝑇) → ((𝐷‘𝑛)‘𝑠) = ((𝐷‘𝑛)‘(𝑥 + 𝑇))) |
353 | 351, 352 | oveq12d 7302 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑥 + 𝑇) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = ((𝐹‘(𝑋 + (𝑥 + 𝑇))) · ((𝐷‘𝑛)‘(𝑥 + 𝑇)))) |
354 | 353 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑠 = (𝑥 + 𝑇)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = ((𝐹‘(𝑋 + (𝑥 + 𝑇))) · ((𝐷‘𝑛)‘(𝑥 + 𝑇)))) |
355 | 316 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) |
356 | 309, 355 | readdcld 11013 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 + 𝑇) ∈ ℝ) |
357 | 316 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) |
358 | 199, 357 | readdcld 11013 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 + 𝑇) ∈ ℝ) |
359 | 198, 358 | readdcld 11013 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑋 + (𝑥 + 𝑇)) ∈ ℝ) |
360 | 197, 359 | ffvelrnd 6971 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑋 + (𝑥 + 𝑇))) ∈ ℂ) |
361 | 360 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑋 + (𝑥 + 𝑇))) ∈ ℂ) |
362 | 77 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐷‘𝑛):ℝ⟶ℝ) |
363 | 362, 356 | ffvelrnd 6971 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑛)‘(𝑥 + 𝑇)) ∈ ℝ) |
364 | 363 | recnd 11012 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑛)‘(𝑥 + 𝑇)) ∈ ℂ) |
365 | 361, 364 | mulcld 11004 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘(𝑋 + (𝑥 + 𝑇))) · ((𝐷‘𝑛)‘(𝑥 + 𝑇))) ∈ ℂ) |
366 | 349, 354,
356, 365 | fvmptd 6891 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐺‘(𝑥 + 𝑇)) = ((𝐹‘(𝑋 + (𝑥 + 𝑇))) · ((𝐷‘𝑛)‘(𝑥 + 𝑇)))) |
367 | 366 | eqcomd 2745 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘(𝑋 + (𝑥 + 𝑇))) · ((𝐷‘𝑛)‘(𝑥 + 𝑇))) = (𝐺‘(𝑥 + 𝑇))) |
368 | 311, 348,
367 | 3eqtrrd 2784 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐺‘(𝑥 + 𝑇)) = (𝐺‘𝑥)) |
369 | 308, 368 | eqtrd 2779 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐺‘(𝑥 + ((π − 𝑋) − (-π − 𝑋)))) = (𝐺‘𝑥)) |
370 | 192 | reseq1i 5890 |
. . . . . . . . . 10
⊢ (𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = ((𝑠 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) |
371 | 370 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = ((𝑠 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
372 | | ioossre 13149 |
. . . . . . . . . 10
⊢ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ℝ |
373 | | resmpt 5948 |
. . . . . . . . . 10
⊢ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ℝ → ((𝑠 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)))) |
374 | 372, 373 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑠 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
375 | 371, 374 | eqtrdi 2795 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)))) |
376 | 271 | rexrd 11034 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
ℝ*) |
377 | 376 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
378 | 274 | rexrd 11034 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
379 | 378 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
380 | 64 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
381 | | elioore 13118 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) → 𝑠 ∈ ℝ) |
382 | 381 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
383 | 380, 382 | readdcld 11013 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ) |
384 | 383 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ) |
385 | | eleq1 2827 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑠 → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↔ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
386 | 385 | anbi2d 629 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑠 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) ↔ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))))) |
387 | 187 | breq2d 5087 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑠 → ((𝑄‘𝑖) < (𝑋 + 𝑥) ↔ (𝑄‘𝑖) < (𝑋 + 𝑠))) |
388 | 386, 387 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑠 → ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑋 + 𝑥)) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑋 + 𝑠)))) |
389 | 149 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ) |
390 | 281, 279 | eqeltrd 2840 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ∈ ℝ) |
391 | 390 | recnd 11012 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ∈ ℂ) |
392 | 389, 391 | addcomd 11186 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑊‘𝑖)) = ((𝑊‘𝑖) + 𝑋)) |
393 | 281 | oveq1d 7299 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘𝑖) + 𝑋) = (((𝑄‘𝑖) − 𝑋) + 𝑋)) |
394 | 271 | recnd 11012 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℂ) |
395 | 394, 389 | npcand 11345 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) − 𝑋) + 𝑋) = (𝑄‘𝑖)) |
396 | 392, 393,
395 | 3eqtrrd 2784 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = (𝑋 + (𝑊‘𝑖))) |
397 | 396 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) = (𝑋 + (𝑊‘𝑖))) |
398 | 390 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) ∈ ℝ) |
399 | | elioore 13118 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) → 𝑥 ∈ ℝ) |
400 | 399 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
401 | 64 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
402 | 390 | rexrd 11034 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ∈
ℝ*) |
403 | 402 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) ∈
ℝ*) |
404 | 291, 290 | eqeltrd 2840 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) ∈ ℝ) |
405 | 404 | rexrd 11034 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) ∈
ℝ*) |
406 | 405 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘(𝑖 + 1)) ∈
ℝ*) |
407 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) |
408 | | ioogtlb 43040 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑊‘𝑖) ∈ ℝ* ∧ (𝑊‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) < 𝑥) |
409 | 403, 406,
407, 408 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) < 𝑥) |
410 | 398, 400,
401, 409 | ltadd2dd 11143 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + (𝑊‘𝑖)) < (𝑋 + 𝑥)) |
411 | 397, 410 | eqbrtrd 5097 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑋 + 𝑥)) |
412 | 388, 411 | chvarvv 2003 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑋 + 𝑠)) |
413 | 187 | breq1d 5085 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑠 → ((𝑋 + 𝑥) < (𝑄‘(𝑖 + 1)) ↔ (𝑋 + 𝑠) < (𝑄‘(𝑖 + 1)))) |
414 | 386, 413 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑠 → ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) < (𝑄‘(𝑖 + 1))) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑄‘(𝑖 + 1))))) |
415 | 404 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘(𝑖 + 1)) ∈ ℝ) |
416 | | iooltub 43055 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑊‘𝑖) ∈ ℝ* ∧ (𝑊‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑥 < (𝑊‘(𝑖 + 1))) |
417 | 403, 406,
407, 416 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑥 < (𝑊‘(𝑖 + 1))) |
418 | 400, 415,
401, 417 | ltadd2dd 11143 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) < (𝑋 + (𝑊‘(𝑖 + 1)))) |
419 | 404 | recnd 11012 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) ∈ ℂ) |
420 | 389, 419 | addcomd 11186 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑊‘(𝑖 + 1))) = ((𝑊‘(𝑖 + 1)) + 𝑋)) |
421 | 291 | oveq1d 7299 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘(𝑖 + 1)) + 𝑋) = (((𝑄‘(𝑖 + 1)) − 𝑋) + 𝑋)) |
422 | 274 | recnd 11012 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
423 | 422, 389 | npcand 11345 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑄‘(𝑖 + 1))) |
424 | 420, 421,
423 | 3eqtrd 2783 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑊‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1))) |
425 | 424 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + (𝑊‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1))) |
426 | 418, 425 | breqtrd 5101 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) < (𝑄‘(𝑖 + 1))) |
427 | 414, 426 | chvarvv 2003 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑄‘(𝑖 + 1))) |
428 | 377, 379,
384, 412, 427 | eliood 43043 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
429 | 187 | cbvmptv 5188 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) |
430 | 429 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑠))) |
431 | | ioossre 13149 |
. . . . . . . . . . . . . . 15
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ |
432 | 431 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) |
433 | 11, 432 | feqresmpt 6847 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥))) |
434 | 433 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥))) |
435 | | fveq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑋 + 𝑠) → (𝐹‘𝑥) = (𝐹‘(𝑋 + 𝑠))) |
436 | 428, 430,
434, 435 | fmptco 7010 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))) |
437 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) = (𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) |
438 | | ssid 3944 |
. . . . . . . . . . . . . . . . 17
⊢ ℂ
⊆ ℂ |
439 | 438 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ℂ ⊆
ℂ) |
440 | 439, 149,
439 | constcncfg 43420 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝑋) ∈ (ℂ–cn→ℂ)) |
441 | | cncfmptid 24085 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℂ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) |
442 | 438, 438,
441 | mp2an 689 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ) |
443 | 442 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) |
444 | 440, 443 | addcncf 24617 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) ∈ (ℂ–cn→ℂ)) |
445 | 444 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) ∈ (ℂ–cn→ℂ)) |
446 | | ioosscn 13150 |
. . . . . . . . . . . . . 14
⊢ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ℂ |
447 | 446 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ℂ) |
448 | | ioosscn 13150 |
. . . . . . . . . . . . . 14
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ |
449 | 448 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
450 | 376 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
451 | 378 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
452 | 64 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
453 | 399 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
454 | 452, 453 | readdcld 11013 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ∈ ℝ) |
455 | 454 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ∈ ℝ) |
456 | 450, 451,
455, 411, 426 | eliood 43043 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
457 | 437, 445,
447, 449, 456 | cncfmptssg 43419 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
458 | 457, 49 | cncfco 24079 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→ℂ)) |
459 | 436, 458 | eqeltrrd 2841 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→ℂ)) |
460 | 459 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→ℂ)) |
461 | | eqid 2739 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ℝ ↦ ((𝐷‘𝑛)‘𝑠)) = (𝑠 ∈ ℝ ↦ ((𝐷‘𝑛)‘𝑠)) |
462 | 77 | feqmptd 6846 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝐷‘𝑛) = (𝑠 ∈ ℝ ↦ ((𝐷‘𝑛)‘𝑠))) |
463 | | cncfss 24071 |
. . . . . . . . . . . . . 14
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)) |
464 | 34, 438, 463 | mp2an 689 |
. . . . . . . . . . . . 13
⊢
(ℝ–cn→ℝ)
⊆ (ℝ–cn→ℂ) |
465 | 67 | dirkercncf 43655 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (𝐷‘𝑛) ∈ (ℝ–cn→ℝ)) |
466 | 464, 465 | sselid 3920 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝐷‘𝑛) ∈ (ℝ–cn→ℂ)) |
467 | 462, 466 | eqeltrrd 2841 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑛)‘𝑠)) ∈ (ℝ–cn→ℂ)) |
468 | 372 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ℝ) |
469 | 438 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ℂ
⊆ ℂ) |
470 | | cncff 24065 |
. . . . . . . . . . . . . 14
⊢ ((𝐷‘𝑛) ∈ (ℝ–cn→ℂ) → (𝐷‘𝑛):ℝ⟶ℂ) |
471 | 466, 470 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (𝐷‘𝑛):ℝ⟶ℂ) |
472 | 471 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝐷‘𝑛):ℝ⟶ℂ) |
473 | 381 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
474 | 472, 473 | ffvelrnd 6971 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝐷‘𝑛)‘𝑠) ∈ ℂ) |
475 | 461, 467,
468, 469, 474 | cncfmptssg 43419 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐷‘𝑛)‘𝑠)) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→ℂ)) |
476 | 475 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐷‘𝑛)‘𝑠)) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→ℂ)) |
477 | 460, 476 | mulcncf 24619 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→ℂ)) |
478 | 375, 477 | eqeltrd 2840 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→ℂ)) |
479 | 453, 201 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑥)) ∈ ℂ) |
480 | 479 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑥)) ∈ ℂ) |
481 | | eqid 2739 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) |
482 | 480, 481 | fmptd 6997 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))):((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))⟶ℂ) |
483 | 482 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))):((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))⟶ℂ) |
484 | 77 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐷‘𝑛):ℝ⟶ℝ) |
485 | 372 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ℝ) |
486 | 484, 485 | fssresd 6650 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))):((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))⟶ℝ) |
487 | 34 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ℝ ⊆
ℂ) |
488 | 486, 487 | fssd 6627 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))):((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))⟶ℂ) |
489 | | eqid 2739 |
. . . . . . . . 9
⊢ (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) |
490 | | fdm 6618 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹:ℝ⟶ℂ →
dom 𝐹 =
ℝ) |
491 | 36, 490 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → dom 𝐹 = ℝ) |
492 | 431, 491 | sseqtrrid 3975 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
493 | | ssdmres 5917 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
494 | 492, 493 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
495 | 494 | eqcomd 2745 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
496 | 495 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
497 | 456, 496 | eleqtrd 2842 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ∈ dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
498 | 271 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
499 | 498, 411 | gtned 11119 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ≠ (𝑄‘𝑖)) |
500 | | eldifsn 4721 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)}) ↔ ((𝑋 + 𝑥) ∈ dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ (𝑋 + 𝑥) ≠ (𝑄‘𝑖))) |
501 | 497, 499,
500 | sylanbrc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
502 | 501 | ralrimiva 3104 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))(𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
503 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) |
504 | 503 | rnmptss 7005 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))(𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)}) → ran (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
505 | 502, 504 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ran (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
506 | | eqidd 2740 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = (𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) |
507 | | oveq2 7292 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑊‘𝑖) → (𝑋 + 𝑥) = (𝑋 + (𝑊‘𝑖))) |
508 | 507 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑊‘𝑖)) → (𝑋 + 𝑥) = (𝑋 + (𝑊‘𝑖))) |
509 | 390 | leidd 11550 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ≤ (𝑊‘𝑖)) |
510 | 390, 404,
292 | ltled 11132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ≤ (𝑊‘(𝑖 + 1))) |
511 | 390, 404,
390, 509, 510 | eliccd 43049 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) |
512 | 396, 271 | eqeltrrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑊‘𝑖)) ∈ ℝ) |
513 | 506, 508,
511, 512 | fvmptd 6891 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘(𝑊‘𝑖)) = (𝑋 + (𝑊‘𝑖))) |
514 | 396 | eqcomd 2745 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑊‘𝑖)) = (𝑄‘𝑖)) |
515 | 513, 514 | eqtr2d 2780 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘(𝑊‘𝑖))) |
516 | 390, 404 | iccssred 13175 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ⊆ ℝ) |
517 | 516, 34 | sstrdi 3934 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ⊆ ℂ) |
518 | 517 | resmptd 5951 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) |
519 | | rescncf 24069 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ∈ (((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))–cn→ℂ))) |
520 | 517, 445,
519 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ∈ (((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))–cn→ℂ)) |
521 | 518, 520 | eqeltrrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ∈ (((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))–cn→ℂ)) |
522 | 521, 511 | cnlimci 25062 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘(𝑊‘𝑖)) ∈ ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘𝑖))) |
523 | 515, 522 | eqeltrd 2840 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘𝑖))) |
524 | | ioossicc 13174 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) |
525 | | resmpt 5948 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) |
526 | 524, 525 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) |
527 | 526 | eqcomi 2748 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) |
528 | 527 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
529 | 528 | oveq1d 7299 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘𝑖)) = (((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
530 | 149 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → 𝑋 ∈ ℂ) |
531 | 390 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) ∈ ℝ) |
532 | 404 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → (𝑊‘(𝑖 + 1)) ∈ ℝ) |
533 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) |
534 | | eliccre 43050 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑊‘𝑖) ∈ ℝ ∧ (𝑊‘(𝑖 + 1)) ∈ ℝ ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
535 | 531, 532,
533, 534 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
536 | 535 | recnd 11012 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → 𝑥 ∈ ℂ) |
537 | 530, 536 | addcld 11003 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ∈ ℂ) |
538 | | eqid 2739 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = (𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) |
539 | 537, 538 | fmptd 6997 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)):((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))⟶ℂ) |
540 | 390, 404,
292, 539 | limciccioolb 43169 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖)) = ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘𝑖))) |
541 | 529, 540 | eqtr2d 2780 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘𝑖)) = ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘𝑖))) |
542 | 523, 541 | eleqtrd 2842 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘𝑖))) |
543 | 505, 542,
51 | limccog 43168 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) limℂ (𝑊‘𝑖))) |
544 | 36, 432 | fssresd 6650 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
545 | 544 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
546 | 456, 503 | fmptd 6997 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)):((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))⟶((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
547 | | fcompt 7014 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ∧ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)):((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))⟶((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) = (𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦)))) |
548 | 545, 546,
547 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) = (𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦)))) |
549 | | eqidd 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) |
550 | | oveq2 7292 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑦 → (𝑋 + 𝑥) = (𝑋 + 𝑦)) |
551 | 550 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) ∧ 𝑥 = 𝑦) → (𝑋 + 𝑥) = (𝑋 + 𝑦)) |
552 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) |
553 | 64 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
554 | 372, 552 | sselid 3920 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑦 ∈ ℝ) |
555 | 553, 554 | readdcld 11013 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑦) ∈ ℝ) |
556 | 549, 551,
552, 555 | fvmptd 6891 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦) = (𝑋 + 𝑦)) |
557 | 556 | fveq2d 6787 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑦))) |
558 | 557 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑦))) |
559 | 376 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
560 | 378 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
561 | 555 | adantlr 712 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑦) ∈ ℝ) |
562 | 396 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) = (𝑋 + (𝑊‘𝑖))) |
563 | 390 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) ∈ ℝ) |
564 | 554 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑦 ∈ ℝ) |
565 | 64 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
566 | 402 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) ∈
ℝ*) |
567 | 405 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘(𝑖 + 1)) ∈
ℝ*) |
568 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) |
569 | | ioogtlb 43040 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑊‘𝑖) ∈ ℝ* ∧ (𝑊‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) < 𝑦) |
570 | 566, 567,
568, 569 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) < 𝑦) |
571 | 563, 564,
565, 570 | ltadd2dd 11143 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + (𝑊‘𝑖)) < (𝑋 + 𝑦)) |
572 | 562, 571 | eqbrtrd 5097 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑋 + 𝑦)) |
573 | 404 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘(𝑖 + 1)) ∈ ℝ) |
574 | | iooltub 43055 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑊‘𝑖) ∈ ℝ* ∧ (𝑊‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑦 < (𝑊‘(𝑖 + 1))) |
575 | 566, 567,
568, 574 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑦 < (𝑊‘(𝑖 + 1))) |
576 | 564, 573,
565, 575 | ltadd2dd 11143 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑦) < (𝑋 + (𝑊‘(𝑖 + 1)))) |
577 | 424 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + (𝑊‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1))) |
578 | 576, 577 | breqtrd 5101 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑦) < (𝑄‘(𝑖 + 1))) |
579 | 559, 560,
561, 572, 578 | eliood 43043 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑦) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
580 | | fvres 6802 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 + 𝑦) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑦))) |
581 | 579, 580 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑦))) |
582 | 558, 581 | eqtrd 2779 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦)) = (𝐹‘(𝑋 + 𝑦))) |
583 | 582 | mpteq2dva 5175 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦))) = (𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑦)))) |
584 | 550 | fveq2d 6787 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘(𝑋 + 𝑦))) |
585 | 584 | cbvmptv 5188 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) = (𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑦))) |
586 | 583, 585 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦))) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))) |
587 | 548, 586 | eqtrd 2779 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))) |
588 | 587 | oveq1d 7299 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) limℂ (𝑊‘𝑖)) = ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) limℂ (𝑊‘𝑖))) |
589 | 543, 588 | eleqtrd 2842 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) limℂ (𝑊‘𝑖))) |
590 | 589 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) limℂ (𝑊‘𝑖))) |
591 | | fvres 6802 |
. . . . . . . . . . . . . 14
⊢ ((𝑊‘𝑖) ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘𝑖)) = ((𝐷‘𝑛)‘(𝑊‘𝑖))) |
592 | 511, 591 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘𝑖)) = ((𝐷‘𝑛)‘(𝑊‘𝑖))) |
593 | 592 | eqcomd 2745 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛)‘(𝑊‘𝑖)) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘𝑖))) |
594 | 593 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛)‘(𝑊‘𝑖)) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘𝑖))) |
595 | 516 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ⊆ ℝ) |
596 | 465 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐷‘𝑛) ∈ (ℝ–cn→ℝ)) |
597 | | rescncf 24069 |
. . . . . . . . . . . . 13
⊢ (((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ⊆ ℝ → ((𝐷‘𝑛) ∈ (ℝ–cn→ℝ) → ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ∈ (((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))–cn→ℝ))) |
598 | 595, 596,
597 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ∈ (((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))–cn→ℝ)) |
599 | 511 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) |
600 | 598, 599 | cnlimci 25062 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘𝑖)) ∈ (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
601 | 594, 600 | eqeltrd 2840 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛)‘(𝑊‘𝑖)) ∈ (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
602 | 524 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) |
603 | 602 | resabs1d 5925 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
604 | 603 | eqcomd 2745 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
605 | 604 | oveq1d 7299 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖)) = ((((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
606 | 605 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖)) = ((((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
607 | 390 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ∈ ℝ) |
608 | 404 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) ∈ ℝ) |
609 | 292 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) < (𝑊‘(𝑖 + 1))) |
610 | 471 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐷‘𝑛):ℝ⟶ℂ) |
611 | 610, 595 | fssresd 6650 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))):((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))⟶ℂ) |
612 | 607, 608,
609, 611 | limciccioolb 43169 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖)) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
613 | 606, 612 | eqtr2d 2780 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖)) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
614 | 601, 613 | eleqtrd 2842 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛)‘(𝑊‘𝑖)) ∈ (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
615 | 483, 488,
489, 590, 614 | mullimcf 43171 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷‘𝑛)‘(𝑊‘𝑖))) ∈ ((𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) limℂ (𝑊‘𝑖))) |
616 | | eqidd 2740 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))) |
617 | 188 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) ∧ 𝑥 = 𝑠) → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘(𝑋 + 𝑠))) |
618 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) |
619 | 36 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝐹:ℝ⟶ℂ) |
620 | 619, 383 | ffvelrnd 6971 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
621 | 620 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
622 | 616, 617,
618, 621 | fvmptd 6891 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) = (𝐹‘(𝑋 + 𝑠))) |
623 | 622 | adantllr 716 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) = (𝐹‘(𝑋 + 𝑠))) |
624 | | fvres 6802 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠) = ((𝐷‘𝑛)‘𝑠)) |
625 | 624 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠) = ((𝐷‘𝑛)‘𝑠)) |
626 | 623, 625 | oveq12d 7302 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
627 | 626 | eqcomd 2745 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) |
628 | 627 | mpteq2dva 5175 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠)))) |
629 | 375, 628 | eqtr2d 2780 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) = (𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
630 | 629 | oveq1d 7299 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) limℂ (𝑊‘𝑖)) = ((𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
631 | 615, 630 | eleqtrd 2842 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷‘𝑛)‘(𝑊‘𝑖))) ∈ ((𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
632 | 455, 426 | ltned 11120 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ≠ (𝑄‘(𝑖 + 1))) |
633 | | eldifsn 4721 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}) ↔ ((𝑋 + 𝑥) ∈ dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ (𝑋 + 𝑥) ≠ (𝑄‘(𝑖 + 1)))) |
634 | 497, 632,
633 | sylanbrc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
635 | 634 | ralrimiva 3104 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))(𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
636 | 503 | rnmptss 7005 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))(𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}) → ran (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
637 | 635, 636 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ran (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
638 | 404 | leidd 11550 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) ≤ (𝑊‘(𝑖 + 1))) |
639 | 390, 404,
404, 510, 638 | eliccd 43049 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) |
640 | 521, 639 | cnlimci 25062 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘(𝑊‘(𝑖 + 1))) ∈ ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘(𝑖 + 1)))) |
641 | | oveq2 7292 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑊‘(𝑖 + 1)) → (𝑋 + 𝑥) = (𝑋 + (𝑊‘(𝑖 + 1)))) |
642 | 641 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑊‘(𝑖 + 1))) → (𝑋 + 𝑥) = (𝑋 + (𝑊‘(𝑖 + 1)))) |
643 | 275, 404 | readdcld 11013 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑊‘(𝑖 + 1))) ∈ ℝ) |
644 | 506, 642,
639, 643 | fvmptd 6891 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘(𝑊‘(𝑖 + 1))) = (𝑋 + (𝑊‘(𝑖 + 1)))) |
645 | 644, 424 | eqtrd 2779 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘(𝑊‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1))) |
646 | 528 | oveq1d 7299 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘(𝑖 + 1))) = (((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
647 | 390, 404,
292, 539 | limcicciooub 43185 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1))) = ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘(𝑖 + 1)))) |
648 | 646, 647 | eqtr2d 2780 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘(𝑖 + 1))) = ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘(𝑖 + 1)))) |
649 | 640, 645,
648 | 3eltr3d 2854 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘(𝑖 + 1)))) |
650 | 637, 649,
54 | limccog 43168 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) limℂ (𝑊‘(𝑖 + 1)))) |
651 | 587 | oveq1d 7299 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) limℂ (𝑊‘(𝑖 + 1))) = ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) limℂ (𝑊‘(𝑖 + 1)))) |
652 | 650, 651 | eleqtrd 2842 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) limℂ (𝑊‘(𝑖 + 1)))) |
653 | 652 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) limℂ (𝑊‘(𝑖 + 1)))) |
654 | 639 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) |
655 | 598, 654 | cnlimci 25062 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘(𝑖 + 1))) ∈ (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
656 | | fvres 6802 |
. . . . . . . . . . 11
⊢ ((𝑊‘(𝑖 + 1)) ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘(𝑖 + 1))) = ((𝐷‘𝑛)‘(𝑊‘(𝑖 + 1)))) |
657 | 654, 656 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘(𝑖 + 1))) = ((𝐷‘𝑛)‘(𝑊‘(𝑖 + 1)))) |
658 | 607, 608,
609, 611 | limcicciooub 43185 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1))) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
659 | 658 | eqcomd 2745 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1))) = ((((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
660 | | resabs1 5924 |
. . . . . . . . . . . . 13
⊢ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
661 | 524, 660 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
662 | 661 | oveq1d 7299 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1))) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
663 | 659, 662 | eqtrd 2779 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1))) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
664 | 655, 657,
663 | 3eltr3d 2854 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛)‘(𝑊‘(𝑖 + 1))) ∈ (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
665 | 483, 488,
489, 653, 664 | mullimcf 43171 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐿 · ((𝐷‘𝑛)‘(𝑊‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) limℂ (𝑊‘(𝑖 + 1)))) |
666 | 629 | oveq1d 7299 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) limℂ (𝑊‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
667 | 665, 666 | eleqtrd 2842 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐿 · ((𝐷‘𝑛)‘(𝑊‘(𝑖 + 1)))) ∈ ((𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
668 | 125, 128,
221, 222, 223, 109, 298, 207, 369, 478, 631, 667 | fourierdlem110 43764 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫(((-π −
𝑋) − -𝑋)[,]((π − 𝑋) − -𝑋))(𝐺‘𝑥) d𝑥 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘𝑥) d𝑥) |
669 | 668 | eqcomd 2745 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)[,](π − 𝑋))(𝐺‘𝑥) d𝑥 = ∫(((-π − 𝑋) − -𝑋)[,]((π − 𝑋) − -𝑋))(𝐺‘𝑥) d𝑥) |
670 | 124 | recnd 11012 |
. . . . . . . . . 10
⊢ (𝜑 → (-π − 𝑋) ∈
ℂ) |
671 | 670, 149 | subnegd 11348 |
. . . . . . . . 9
⊢ (𝜑 → ((-π − 𝑋) − -𝑋) = ((-π − 𝑋) + 𝑋)) |
672 | 151, 149 | npcand 11345 |
. . . . . . . . 9
⊢ (𝜑 → ((-π − 𝑋) + 𝑋) = -π) |
673 | 671, 672 | eqtrd 2779 |
. . . . . . . 8
⊢ (𝜑 → ((-π − 𝑋) − -𝑋) = -π) |
674 | 127 | recnd 11012 |
. . . . . . . . . 10
⊢ (𝜑 → (π − 𝑋) ∈
ℂ) |
675 | 674, 149 | subnegd 11348 |
. . . . . . . . 9
⊢ (𝜑 → ((π − 𝑋) − -𝑋) = ((π − 𝑋) + 𝑋)) |
676 | 150, 149 | npcand 11345 |
. . . . . . . . 9
⊢ (𝜑 → ((π − 𝑋) + 𝑋) = π) |
677 | 675, 676 | eqtrd 2779 |
. . . . . . . 8
⊢ (𝜑 → ((π − 𝑋) − -𝑋) = π) |
678 | 673, 677 | oveq12d 7302 |
. . . . . . 7
⊢ (𝜑 → (((-π − 𝑋) − -𝑋)[,]((π − 𝑋) − -𝑋)) = (-π[,]π)) |
679 | 678 | itgeq1d 43505 |
. . . . . 6
⊢ (𝜑 → ∫(((-π −
𝑋) − -𝑋)[,]((π − 𝑋) − -𝑋))(𝐺‘𝑥) d𝑥 = ∫(-π[,]π)(𝐺‘𝑥) d𝑥) |
680 | 679 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫(((-π −
𝑋) − -𝑋)[,]((π − 𝑋) − -𝑋))(𝐺‘𝑥) d𝑥 = ∫(-π[,]π)(𝐺‘𝑥) d𝑥) |
681 | 669, 680 | eqtrd 2779 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)[,](π − 𝑋))(𝐺‘𝑥) d𝑥 = ∫(-π[,]π)(𝐺‘𝑥) d𝑥) |
682 | | fveq2 6783 |
. . . . . 6
⊢ (𝑥 = 𝑠 → (𝐺‘𝑥) = (𝐺‘𝑠)) |
683 | 682 | cbvitgv 24950 |
. . . . 5
⊢
∫(-π(,)π)(𝐺‘𝑥) d𝑥 = ∫(-π(,)π)(𝐺‘𝑠) d𝑠 |
684 | 207 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (-π[,]π)) → 𝐺:ℝ⟶ℂ) |
685 | 28 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (-π[,]π)) → 𝑥 ∈
ℝ) |
686 | 684, 685 | ffvelrnd 6971 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (-π[,]π)) → (𝐺‘𝑥) ∈ ℂ) |
687 | 71, 72, 686 | itgioo 24989 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π(,)π)(𝐺‘𝑥) d𝑥 = ∫(-π[,]π)(𝐺‘𝑥) d𝑥) |
688 | | elioore 13118 |
. . . . . . . 8
⊢ (𝑠 ∈ (-π(,)π) →
𝑠 ∈
ℝ) |
689 | 688 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)π)) → 𝑠 ∈
ℝ) |
690 | 36 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (-π(,)π)) → 𝐹:ℝ⟶ℂ) |
691 | 64 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (-π(,)π)) → 𝑋 ∈
ℝ) |
692 | 688 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (-π(,)π)) → 𝑠 ∈
ℝ) |
693 | 691, 692 | readdcld 11013 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (-π(,)π)) → (𝑋 + 𝑠) ∈ ℝ) |
694 | 690, 693 | ffvelrnd 6971 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (-π(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
695 | 694 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
696 | 77 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)π)) → (𝐷‘𝑛):ℝ⟶ℝ) |
697 | 696, 689 | ffvelrnd 6971 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)π)) → ((𝐷‘𝑛)‘𝑠) ∈ ℝ) |
698 | 697 | recnd 11012 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)π)) → ((𝐷‘𝑛)‘𝑠) ∈ ℂ) |
699 | 695, 698 | mulcld 11004 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) |
700 | 689, 699,
193 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)π)) → (𝐺‘𝑠) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
701 | 700 | itgeq2dv 24955 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π(,)π)(𝐺‘𝑠) d𝑠 = ∫(-π(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
702 | 683, 687,
701 | 3eqtr3a 2803 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π[,]π)(𝐺‘𝑥) d𝑥 = ∫(-π(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
703 | 220, 681,
702 | 3eqtrd 2783 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 = ∫(-π(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
704 | 70, 173, 703 | 3eqtrd 2783 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑆‘𝑛) = ∫(-π(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
705 | 72 | renegcld 11411 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → -π ∈
ℝ) |
706 | | 0red 10987 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ∈
ℝ) |
707 | | 0re 10986 |
. . . . . 6
⊢ 0 ∈
ℝ |
708 | | negpilt0 42826 |
. . . . . 6
⊢ -π
< 0 |
709 | 23, 707, 708 | ltleii 11107 |
. . . . 5
⊢ -π
≤ 0 |
710 | 709 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → -π ≤
0) |
711 | | pipos 25626 |
. . . . . 6
⊢ 0 <
π |
712 | 707, 22, 711 | ltleii 11107 |
. . . . 5
⊢ 0 ≤
π |
713 | 712 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤
π) |
714 | 71, 72, 706, 710, 713 | eliccd 43049 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ∈
(-π[,]π)) |
715 | | ioossicc 13174 |
. . . . 5
⊢
(-π(,)0) ⊆ (-π[,]0) |
716 | 715 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (-π(,)0) ⊆
(-π[,]0)) |
717 | | ioombl 24738 |
. . . . 5
⊢
(-π(,)0) ∈ dom vol |
718 | 717 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (-π(,)0) ∈
dom vol) |
719 | 36 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]0)) → 𝐹:ℝ⟶ℂ) |
720 | 64 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]0)) → 𝑋 ∈ ℝ) |
721 | 23 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (-π[,]0) → -π
∈ ℝ) |
722 | | 0red 10987 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (-π[,]0) → 0
∈ ℝ) |
723 | | id 22 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (-π[,]0) → 𝑠 ∈
(-π[,]0)) |
724 | | eliccre 43050 |
. . . . . . . . . 10
⊢ ((-π
∈ ℝ ∧ 0 ∈ ℝ ∧ 𝑠 ∈ (-π[,]0)) → 𝑠 ∈
ℝ) |
725 | 721, 722,
723, 724 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝑠 ∈ (-π[,]0) → 𝑠 ∈
ℝ) |
726 | 725 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]0)) → 𝑠 ∈
ℝ) |
727 | 720, 726 | readdcld 11013 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]0)) → (𝑋 + 𝑠) ∈ ℝ) |
728 | 719, 727 | ffvelrnd 6971 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]0)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
729 | 728 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
730 | 77 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → (𝐷‘𝑛):ℝ⟶ℝ) |
731 | 725 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → 𝑠 ∈
ℝ) |
732 | 730, 731 | ffvelrnd 6971 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → ((𝐷‘𝑛)‘𝑠) ∈ ℝ) |
733 | 732 | recnd 11012 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → ((𝐷‘𝑛)‘𝑠) ∈ ℂ) |
734 | 729, 733 | mulcld 11004 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) |
735 | 731, 734,
193 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → (𝐺‘𝑠) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
736 | 735 | eqcomd 2745 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = (𝐺‘𝑠)) |
737 | 736 | mpteq2dva 5175 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]0) ↦ (𝐺‘𝑠))) |
738 | 305 | oveq2d 7300 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 + ((π − 𝑋) − (-π − 𝑋))) = (𝑠 + 𝑇)) |
739 | 738 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝑠 + ((π − 𝑋) − (-π − 𝑋))) = (𝑠 + 𝑇)) |
740 | 739 | fveq2d 6787 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐺‘(𝑠 + ((π − 𝑋) − (-π − 𝑋)))) = (𝐺‘(𝑠 + 𝑇))) |
741 | 186 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → 𝐺 = (𝑥 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥)))) |
742 | | oveq2 7292 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑠 + 𝑇) → (𝑋 + 𝑥) = (𝑋 + (𝑠 + 𝑇))) |
743 | 742 | fveq2d 6787 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑠 + 𝑇) → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘(𝑋 + (𝑠 + 𝑇)))) |
744 | | fveq2 6783 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑠 + 𝑇) → ((𝐷‘𝑛)‘𝑥) = ((𝐷‘𝑛)‘(𝑠 + 𝑇))) |
745 | 743, 744 | oveq12d 7302 |
. . . . . . . . 9
⊢ (𝑥 = (𝑠 + 𝑇) → ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥)) = ((𝐹‘(𝑋 + (𝑠 + 𝑇))) · ((𝐷‘𝑛)‘(𝑠 + 𝑇)))) |
746 | 745 | adantl 482 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) ∧ 𝑥 = (𝑠 + 𝑇)) → ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥)) = ((𝐹‘(𝑋 + (𝑠 + 𝑇))) · ((𝐷‘𝑛)‘(𝑠 + 𝑇)))) |
747 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝑠 ∈ ℝ) |
748 | 316 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝑇 ∈ ℝ) |
749 | 747, 748 | readdcld 11013 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝑠 + 𝑇) ∈ ℝ) |
750 | 749 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝑠 + 𝑇) ∈ ℝ) |
751 | 36 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝐹:ℝ⟶ℂ) |
752 | 64 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝑋 ∈ ℝ) |
753 | 752, 749 | readdcld 11013 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝑋 + (𝑠 + 𝑇)) ∈ ℝ) |
754 | 751, 753 | ffvelrnd 6971 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑋 + (𝑠 + 𝑇))) ∈ ℂ) |
755 | 754 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑋 + (𝑠 + 𝑇))) ∈ ℂ) |
756 | 77 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐷‘𝑛):ℝ⟶ℝ) |
757 | 756, 750 | ffvelrnd 6971 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑛)‘(𝑠 + 𝑇)) ∈ ℝ) |
758 | 757 | recnd 11012 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑛)‘(𝑠 + 𝑇)) ∈ ℂ) |
759 | 755, 758 | mulcld 11004 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐹‘(𝑋 + (𝑠 + 𝑇))) · ((𝐷‘𝑛)‘(𝑠 + 𝑇))) ∈ ℂ) |
760 | 741, 746,
750, 759 | fvmptd 6891 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐺‘(𝑠 + 𝑇)) = ((𝐹‘(𝑋 + (𝑠 + 𝑇))) · ((𝐷‘𝑛)‘(𝑠 + 𝑇)))) |
761 | 149 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝑋 ∈ ℂ) |
762 | 747 | recnd 11012 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝑠 ∈ ℂ) |
763 | 318 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝑇 ∈ ℂ) |
764 | 761, 762,
763 | addassd 11006 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → ((𝑋 + 𝑠) + 𝑇) = (𝑋 + (𝑠 + 𝑇))) |
765 | 764 | eqcomd 2745 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝑋 + (𝑠 + 𝑇)) = ((𝑋 + 𝑠) + 𝑇)) |
766 | 765 | fveq2d 6787 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑋 + (𝑠 + 𝑇))) = (𝐹‘((𝑋 + 𝑠) + 𝑇))) |
767 | 752, 747 | readdcld 11013 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝑋 + 𝑠) ∈ ℝ) |
768 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝜑) |
769 | 768, 767 | jca 512 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝜑 ∧ (𝑋 + 𝑠) ∈ ℝ)) |
770 | | eleq1 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑋 + 𝑠) → (𝑥 ∈ ℝ ↔ (𝑋 + 𝑠) ∈ ℝ)) |
771 | 770 | anbi2d 629 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑋 + 𝑠) → ((𝜑 ∧ 𝑥 ∈ ℝ) ↔ (𝜑 ∧ (𝑋 + 𝑠) ∈ ℝ))) |
772 | | oveq1 7291 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑋 + 𝑠) → (𝑥 + 𝑇) = ((𝑋 + 𝑠) + 𝑇)) |
773 | 772 | fveq2d 6787 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑋 + 𝑠) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘((𝑋 + 𝑠) + 𝑇))) |
774 | 773, 435 | eqeq12d 2755 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑋 + 𝑠) → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘((𝑋 + 𝑠) + 𝑇)) = (𝐹‘(𝑋 + 𝑠)))) |
775 | 771, 774 | imbi12d 345 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑋 + 𝑠) → (((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ (𝑋 + 𝑠) ∈ ℝ) → (𝐹‘((𝑋 + 𝑠) + 𝑇)) = (𝐹‘(𝑋 + 𝑠))))) |
776 | 775, 339 | vtoclg 3506 |
. . . . . . . . . . . 12
⊢ ((𝑋 + 𝑠) ∈ ℝ → ((𝜑 ∧ (𝑋 + 𝑠) ∈ ℝ) → (𝐹‘((𝑋 + 𝑠) + 𝑇)) = (𝐹‘(𝑋 + 𝑠)))) |
777 | 767, 769,
776 | sylc 65 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝐹‘((𝑋 + 𝑠) + 𝑇)) = (𝐹‘(𝑋 + 𝑠))) |
778 | 766, 777 | eqtrd 2779 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑋 + (𝑠 + 𝑇))) = (𝐹‘(𝑋 + 𝑠))) |
779 | 778 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑋 + (𝑠 + 𝑇))) = (𝐹‘(𝑋 + 𝑠))) |
780 | 67, 302 | dirkerper 43644 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑛)‘(𝑠 + 𝑇)) = ((𝐷‘𝑛)‘𝑠)) |
781 | 780 | adantll 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑛)‘(𝑠 + 𝑇)) = ((𝐷‘𝑛)‘𝑠)) |
782 | 779, 781 | oveq12d 7302 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐹‘(𝑋 + (𝑠 + 𝑇))) · ((𝐷‘𝑛)‘(𝑠 + 𝑇))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
783 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → 𝑠 ∈ ℝ) |
784 | 782, 759 | eqeltrrd 2841 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) |
785 | 783, 784,
193 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐺‘𝑠) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
786 | 785 | eqcomd 2745 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = (𝐺‘𝑠)) |
787 | 782, 786 | eqtrd 2779 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐹‘(𝑋 + (𝑠 + 𝑇))) · ((𝐷‘𝑛)‘(𝑠 + 𝑇))) = (𝐺‘𝑠)) |
788 | 740, 760,
787 | 3eqtrd 2783 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐺‘(𝑠 + ((π − 𝑋) − (-π − 𝑋)))) = (𝐺‘𝑠)) |
789 | | 0ltpnf 12867 |
. . . . . . . 8
⊢ 0 <
+∞ |
790 | | pnfxr 11038 |
. . . . . . . . 9
⊢ +∞
∈ ℝ* |
791 | | elioo2 13129 |
. . . . . . . . 9
⊢ ((-π
∈ ℝ* ∧ +∞ ∈ ℝ*) → (0
∈ (-π(,)+∞) ↔ (0 ∈ ℝ ∧ -π < 0 ∧ 0
< +∞))) |
792 | 39, 790, 791 | mp2an 689 |
. . . . . . . 8
⊢ (0 ∈
(-π(,)+∞) ↔ (0 ∈ ℝ ∧ -π < 0 ∧ 0 <
+∞)) |
793 | 707, 708,
789, 792 | mpbir3an 1340 |
. . . . . . 7
⊢ 0 ∈
(-π(,)+∞) |
794 | 793 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ∈
(-π(,)+∞)) |
795 | 223, 221,
109, 298, 207, 788, 478, 631, 667, 71, 794 | fourierdlem105 43759 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]0) ↦ (𝐺‘𝑠)) ∈
𝐿1) |
796 | 737, 795 | eqeltrd 2840 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ∈
𝐿1) |
797 | 716, 718,
734, 796 | iblss 24978 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ∈
𝐿1) |
798 | | elioore 13118 |
. . . . . . . 8
⊢ (𝑠 ∈ (0(,)π) → 𝑠 ∈
ℝ) |
799 | 798 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ) |
800 | 799, 784 | syldan 591 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) |
801 | 799, 800,
193 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐺‘𝑠) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
802 | 801 | eqcomd 2745 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = (𝐺‘𝑠)) |
803 | 802 | mpteq2dva 5175 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) = (𝑠 ∈ (0(,)π) ↦ (𝐺‘𝑠))) |
804 | | ioossicc 13174 |
. . . . . 6
⊢
(0(,)π) ⊆ (0[,]π) |
805 | 804 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (0(,)π) ⊆
(0[,]π)) |
806 | | ioombl 24738 |
. . . . . 6
⊢
(0(,)π) ∈ dom vol |
807 | 806 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (0(,)π) ∈ dom
vol) |
808 | 207 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0[,]π)) → 𝐺:ℝ⟶ℂ) |
809 | | 0red 10987 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]π)) → 0 ∈
ℝ) |
810 | 22 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]π)) → π ∈
ℝ) |
811 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]π)) → 𝑠 ∈ (0[,]π)) |
812 | | eliccre 43050 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ π ∈ ℝ ∧ 𝑠 ∈ (0[,]π)) → 𝑠 ∈ ℝ) |
813 | 809, 810,
811, 812 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]π)) → 𝑠 ∈ ℝ) |
814 | 813 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0[,]π)) → 𝑠 ∈ ℝ) |
815 | 808, 814 | ffvelrnd 6971 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0[,]π)) → (𝐺‘𝑠) ∈ ℂ) |
816 | | 0xr 11031 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
817 | 816 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ∈
ℝ*) |
818 | 790 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → +∞ ∈
ℝ*) |
819 | 711 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 <
π) |
820 | | ltpnf 12865 |
. . . . . . . 8
⊢ (π
∈ ℝ → π < +∞) |
821 | 22, 820 | mp1i 13 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → π <
+∞) |
822 | 817, 818,
72, 819, 821 | eliood 43043 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → π ∈
(0(,)+∞)) |
823 | 223, 221,
109, 298, 207, 788, 478, 631, 667, 706, 822 | fourierdlem105 43759 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (0[,]π) ↦ (𝐺‘𝑠)) ∈
𝐿1) |
824 | 805, 807,
815, 823 | iblss 24978 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ (𝐺‘𝑠)) ∈
𝐿1) |
825 | 803, 824 | eqeltrd 2840 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ∈
𝐿1) |
826 | 705, 72, 714, 699, 797, 825 | itgsplitioo 25011 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠)) |
827 | 704, 826 | eqtrd 2779 |
1
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑆‘𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠)) |