| Step | Hyp | Ref
| Expression |
| 1 | | eleq1 2829 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (𝑘 ∈ ℕ ↔ 𝑛 ∈ ℕ)) |
| 2 | 1 | anbi2d 630 |
. . . . 5
⊢ (𝑘 = 𝑛 → ((𝜑 ∧ 𝑘 ∈ ℕ) ↔ (𝜑 ∧ 𝑛 ∈ ℕ))) |
| 3 | | fveq2 6906 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (𝑆‘𝑘) = (𝑆‘𝑛)) |
| 4 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐷‘𝑘) = (𝐷‘𝑛)) |
| 5 | 4 | fveq1d 6908 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((𝐷‘𝑘)‘(𝑡 − 𝑋)) = ((𝐷‘𝑛)‘(𝑡 − 𝑋))) |
| 6 | 5 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑡) · ((𝐷‘𝑘)‘(𝑡 − 𝑋))) = ((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋)))) |
| 7 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝑘 = 𝑛 ∧ 𝑡 ∈ (-π(,)π)) → ((𝐹‘𝑡) · ((𝐷‘𝑘)‘(𝑡 − 𝑋))) = ((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋)))) |
| 8 | 7 | itgeq2dv 25817 |
. . . . . 6
⊢ (𝑘 = 𝑛 → ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑘)‘(𝑡 − 𝑋))) d𝑡 = ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡) |
| 9 | 3, 8 | eqeq12d 2753 |
. . . . 5
⊢ (𝑘 = 𝑛 → ((𝑆‘𝑘) = ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑘)‘(𝑡 − 𝑋))) d𝑡 ↔ (𝑆‘𝑛) = ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡)) |
| 10 | 2, 9 | imbi12d 344 |
. . . 4
⊢ (𝑘 = 𝑛 → (((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) = ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑘)‘(𝑡 − 𝑋))) d𝑡) ↔ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑆‘𝑛) = ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡))) |
| 11 | | fourierdlem111.6 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐹:ℝ⟶ℝ) |
| 13 | | eqid 2737 |
. . . . 5
⊢
(-π(,)π) = (-π(,)π) |
| 14 | | ioossre 13448 |
. . . . . . . . 9
⊢
(-π(,)π) ⊆ ℝ |
| 15 | 14 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (-π(,)π) ⊆
ℝ) |
| 16 | 11, 15 | feqresmpt 6978 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ↾ (-π(,)π)) = (𝑥 ∈ (-π(,)π) ↦
(𝐹‘𝑥))) |
| 17 | | ioossicc 13473 |
. . . . . . . . 9
⊢
(-π(,)π) ⊆ (-π[,]π) |
| 18 | 17 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (-π(,)π) ⊆
(-π[,]π)) |
| 19 | | ioombl 25600 |
. . . . . . . . 9
⊢
(-π(,)π) ∈ dom vol |
| 20 | 19 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (-π(,)π) ∈ dom
vol) |
| 21 | 11 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ) |
| 22 | | pire 26500 |
. . . . . . . . . . . . . . 15
⊢ π
∈ ℝ |
| 23 | 22 | renegcli 11570 |
. . . . . . . . . . . . . 14
⊢ -π
∈ ℝ |
| 24 | 23, 22 | elicc2i 13453 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (-π[,]π) ↔
(𝑡 ∈ ℝ ∧
-π ≤ 𝑡 ∧ 𝑡 ≤ π)) |
| 25 | 24 | simp1bi 1146 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (-π[,]π) →
𝑡 ∈
ℝ) |
| 26 | 25 | ssriv 3987 |
. . . . . . . . . . 11
⊢
(-π[,]π) ⊆ ℝ |
| 27 | 26 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (-π[,]π) ⊆
ℝ) |
| 28 | 27 | sselda 3983 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π)) → 𝑥 ∈
ℝ) |
| 29 | 21, 28 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π)) → (𝐹‘𝑥) ∈ ℝ) |
| 30 | 11, 27 | feqresmpt 6978 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ↾ (-π[,]π)) = (𝑥 ∈ (-π[,]π) ↦
(𝐹‘𝑥))) |
| 31 | | fourierdlem111.p |
. . . . . . . . . 10
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 32 | | fourierdlem111.m |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 33 | | fourierdlem111.q |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
| 34 | | ax-resscn 11212 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
| 35 | 34 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 36 | 11, 35 | fssd 6753 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
| 37 | 36, 27 | fssresd 6775 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ↾
(-π[,]π)):(-π[,]π)⟶ℂ) |
| 38 | | ioossicc 13473 |
. . . . . . . . . . . . 13
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
| 39 | 23 | rexri 11319 |
. . . . . . . . . . . . . . 15
⊢ -π
∈ ℝ* |
| 40 | 39 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -π ∈
ℝ*) |
| 41 | 22 | rexri 11319 |
. . . . . . . . . . . . . . 15
⊢ π
∈ ℝ* |
| 42 | 41 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → π ∈
ℝ*) |
| 43 | 31, 32, 33 | fourierdlem15 46137 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) |
| 44 | 43 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
| 45 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) |
| 46 | 40, 42, 44, 45 | fourierdlem8 46130 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
| 47 | 38, 46 | sstrid 3995 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
| 48 | 47 | resabs1d 6026 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 49 | | fourierdlem111.fcn |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 50 | 48, 49 | eqeltrd 2841 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 51 | | fourierdlem111.r |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
| 52 | 48 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
| 53 | 51, 52 | eleqtrrd 2844 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
| 54 | | fourierdlem111.l |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
| 55 | 48 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
| 56 | 54, 55 | eleqtrrd 2844 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
| 57 | 31, 32, 33, 37, 50, 53, 56 | fourierdlem69 46190 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ↾ (-π[,]π)) ∈
𝐿1) |
| 58 | 30, 57 | eqeltrrd 2842 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (-π[,]π) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
| 59 | 18, 20, 29, 58 | iblss 25840 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (-π(,)π) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
| 60 | 16, 59 | eqeltrd 2841 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ (-π(,)π)) ∈
𝐿1) |
| 61 | 60 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹 ↾ (-π(,)π)) ∈
𝐿1) |
| 62 | | fourierdlem111.a |
. . . . 5
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦
(∫(-π(,)π)((𝐹‘𝑡) · (cos‘(𝑛 · 𝑡))) d𝑡 / π)) |
| 63 | | fourierdlem111.b |
. . . . 5
⊢ 𝐵 = (𝑛 ∈ ℕ ↦
(∫(-π(,)π)((𝐹‘𝑡) · (sin‘(𝑛 · 𝑡))) d𝑡 / π)) |
| 64 | | fourierdlem111.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 65 | 64 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑋 ∈ ℝ) |
| 66 | | fourierdlem111.s |
. . . . 5
⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))))) |
| 67 | | fourierdlem111.d |
. . . . 5
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 /
2))))))) |
| 68 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
| 69 | 12, 13, 61, 62, 63, 65, 66, 67, 68 | fourierdlem83 46204 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) = ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑘)‘(𝑡 − 𝑋))) d𝑡) |
| 70 | 10, 69 | chvarvv 1998 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑆‘𝑛) = ∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡) |
| 71 | 23 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → -π ∈
ℝ) |
| 72 | 22 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → π ∈
ℝ) |
| 73 | 36 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℂ) |
| 74 | 25 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → 𝑡 ∈
ℝ) |
| 75 | 73, 74 | ffvelcdmd 7105 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → (𝐹‘𝑡) ∈ ℂ) |
| 76 | 75 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ (-π[,]π)) → (𝐹‘𝑡) ∈ ℂ) |
| 77 | 67 | dirkerf 46112 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → (𝐷‘𝑛):ℝ⟶ℝ) |
| 78 | 77 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ (-π[,]π)) → (𝐷‘𝑛):ℝ⟶ℝ) |
| 79 | 64 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → 𝑋 ∈
ℝ) |
| 80 | 74, 79 | resubcld 11691 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → (𝑡 − 𝑋) ∈ ℝ) |
| 81 | 80 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ (-π[,]π)) → (𝑡 − 𝑋) ∈ ℝ) |
| 82 | 78, 81 | ffvelcdmd 7105 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ (-π[,]π)) → ((𝐷‘𝑛)‘(𝑡 − 𝑋)) ∈ ℝ) |
| 83 | 82 | recnd 11289 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ (-π[,]π)) → ((𝐷‘𝑛)‘(𝑡 − 𝑋)) ∈ ℂ) |
| 84 | 76, 83 | mulcld 11281 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ (-π[,]π)) → ((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) ∈ ℂ) |
| 85 | 71, 72, 84 | itgioo 25851 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡 = ∫(-π[,]π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡) |
| 86 | | fvres 6925 |
. . . . . . . 8
⊢ (𝑡 ∈ (-π[,]π) →
((𝐹 ↾
(-π[,]π))‘𝑡) =
(𝐹‘𝑡)) |
| 87 | 86 | eqcomd 2743 |
. . . . . . 7
⊢ (𝑡 ∈ (-π[,]π) →
(𝐹‘𝑡) = ((𝐹 ↾ (-π[,]π))‘𝑡)) |
| 88 | 87 | oveq1d 7446 |
. . . . . 6
⊢ (𝑡 ∈ (-π[,]π) →
((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) = (((𝐹 ↾ (-π[,]π))‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋)))) |
| 89 | 88 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ (-π[,]π)) → ((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) = (((𝐹 ↾ (-π[,]π))‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋)))) |
| 90 | 89 | itgeq2dv 25817 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π[,]π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡 = ∫(-π[,]π)(((𝐹 ↾ (-π[,]π))‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡) |
| 91 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → 𝑛 = 𝑚) |
| 92 | 91 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → (2 · 𝑛) = (2 · 𝑚)) |
| 93 | 92 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → ((2 · 𝑛) + 1) = ((2 · 𝑚) + 1)) |
| 94 | 93 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → (((2 · 𝑛) + 1) / (2 · π)) =
(((2 · 𝑚) + 1) / (2
· π))) |
| 95 | 91 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → (𝑛 + (1 / 2)) = (𝑚 + (1 / 2))) |
| 96 | 95 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → ((𝑛 + (1 / 2)) · 𝑦) = ((𝑚 + (1 / 2)) · 𝑦)) |
| 97 | 96 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → (sin‘((𝑛 + (1 / 2)) · 𝑦)) = (sin‘((𝑚 + (1 / 2)) · 𝑦))) |
| 98 | 97 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 / 2)))) =
((sin‘((𝑚 + (1 / 2))
· 𝑦)) / ((2 ·
π) · (sin‘(𝑦 / 2))))) |
| 99 | 94, 98 | ifeq12d 4547 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑚 ∧ 𝑦 ∈ ℝ) → if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 / 2))))) =
if((𝑦 mod (2 ·
π)) = 0, (((2 · 𝑚) + 1) / (2 · π)),
((sin‘((𝑚 + (1 / 2))
· 𝑦)) / ((2 ·
π) · (sin‘(𝑦 / 2)))))) |
| 100 | 99 | mpteq2dva 5242 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 / 2)))))) =
(𝑦 ∈ ℝ ↦
if((𝑦 mod (2 ·
π)) = 0, (((2 · 𝑚) + 1) / (2 · π)),
((sin‘((𝑚 + (1 / 2))
· 𝑦)) / ((2 ·
π) · (sin‘(𝑦 / 2))))))) |
| 101 | 100 | cbvmptv 5255 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦
if((𝑦 mod (2 ·
π)) = 0, (((2 · 𝑛) + 1) / (2 · π)),
((sin‘((𝑛 + (1 / 2))
· 𝑦)) / ((2 ·
π) · (sin‘(𝑦 / 2))))))) = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑚) + 1) / (2
· π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 /
2))))))) |
| 102 | 67, 101 | eqtri 2765 |
. . . . . 6
⊢ 𝐷 = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑚) + 1) / (2
· π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 /
2))))))) |
| 103 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → ((𝐹 ↾ (-π[,]π))‘𝑠) = ((𝐹 ↾ (-π[,]π))‘𝑡)) |
| 104 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑠 = 𝑡 → (𝑠 − 𝑋) = (𝑡 − 𝑋)) |
| 105 | 104 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → ((𝐷‘𝑛)‘(𝑠 − 𝑋)) = ((𝐷‘𝑛)‘(𝑡 − 𝑋))) |
| 106 | 103, 105 | oveq12d 7449 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → (((𝐹 ↾ (-π[,]π))‘𝑠) · ((𝐷‘𝑛)‘(𝑠 − 𝑋))) = (((𝐹 ↾ (-π[,]π))‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋)))) |
| 107 | 106 | cbvmptv 5255 |
. . . . . 6
⊢ (𝑠 ∈ (-π[,]π) ↦
(((𝐹 ↾
(-π[,]π))‘𝑠)
· ((𝐷‘𝑛)‘(𝑠 − 𝑋)))) = (𝑡 ∈ (-π[,]π) ↦ (((𝐹 ↾
(-π[,]π))‘𝑡)
· ((𝐷‘𝑛)‘(𝑡 − 𝑋)))) |
| 108 | 33 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑄 ∈ (𝑃‘𝑀)) |
| 109 | 32 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ ℕ) |
| 110 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 111 | 64 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ ℝ) |
| 112 | 37 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹 ↾
(-π[,]π)):(-π[,]π)⟶ℂ) |
| 113 | 50 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 114 | 53 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
| 115 | 56 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ (-π[,]π)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
| 116 | 102, 31, 107, 108, 109, 110, 111, 112, 113, 114, 115 | fourierdlem101 46222 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π[,]π)(((𝐹
↾ (-π[,]π))‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(((𝐹 ↾ (-π[,]π))‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦) |
| 117 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑦 → (𝑋 + 𝑠) = (𝑋 + 𝑦)) |
| 118 | 117 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑠 = 𝑦 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑦))) |
| 119 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑠 = 𝑦 → ((𝐷‘𝑛)‘𝑠) = ((𝐷‘𝑛)‘𝑦)) |
| 120 | 118, 119 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑠 = 𝑦 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = ((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦))) |
| 121 | 120 | cbvitgv 25812 |
. . . . . . 7
⊢
∫((-π − 𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 = ∫((-π − 𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦 |
| 122 | 121 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 = ∫((-π − 𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦) |
| 123 | 23 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → -π ∈
ℝ) |
| 124 | 123, 64 | resubcld 11691 |
. . . . . . . 8
⊢ (𝜑 → (-π − 𝑋) ∈
ℝ) |
| 125 | 124 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (-π − 𝑋) ∈
ℝ) |
| 126 | 22 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → π ∈
ℝ) |
| 127 | 126, 64 | resubcld 11691 |
. . . . . . . 8
⊢ (𝜑 → (π − 𝑋) ∈
ℝ) |
| 128 | 127 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (π − 𝑋) ∈
ℝ) |
| 129 | 36 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝐹:ℝ⟶ℂ) |
| 130 | 64 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑋 ∈ ℝ) |
| 131 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) |
| 132 | 124 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (-π − 𝑋) ∈ ℝ) |
| 133 | 127 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (π − 𝑋) ∈ ℝ) |
| 134 | | elicc2 13452 |
. . . . . . . . . . . . . 14
⊢ (((-π
− 𝑋) ∈ ℝ
∧ (π − 𝑋)
∈ ℝ) → (𝑦
∈ ((-π − 𝑋)[,](π − 𝑋)) ↔ (𝑦 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑦 ∧ 𝑦 ≤ (π − 𝑋)))) |
| 135 | 132, 133,
134 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋)) ↔ (𝑦 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑦 ∧ 𝑦 ≤ (π − 𝑋)))) |
| 136 | 131, 135 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑦 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑦 ∧ 𝑦 ≤ (π − 𝑋))) |
| 137 | 136 | simp1d 1143 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑦 ∈ ℝ) |
| 138 | 130, 137 | readdcld 11290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑦) ∈ ℝ) |
| 139 | 129, 138 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐹‘(𝑋 + 𝑦)) ∈ ℂ) |
| 140 | 139 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐹‘(𝑋 + 𝑦)) ∈ ℂ) |
| 141 | 77 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐷‘𝑛):ℝ⟶ℝ) |
| 142 | 137 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑦 ∈ ℝ) |
| 143 | 141, 142 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐷‘𝑛)‘𝑦) ∈ ℝ) |
| 144 | 143 | recnd 11289 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐷‘𝑛)‘𝑦) ∈ ℂ) |
| 145 | 140, 144 | mulcld 11281 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) ∈ ℂ) |
| 146 | 125, 128,
145 | itgioo 25851 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦 = ∫((-π − 𝑋)[,](π − 𝑋))((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦) |
| 147 | 23 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π ∈
ℝ) |
| 148 | 22 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → π ∈
ℝ) |
| 149 | 64 | recnd 11289 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 150 | 126 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → π ∈
ℂ) |
| 151 | 150 | negcld 11607 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → -π ∈
ℂ) |
| 152 | 149, 151 | pncan3d 11623 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑋 + (-π − 𝑋)) = -π) |
| 153 | 152 | eqcomd 2743 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → -π = (𝑋 + (-π − 𝑋))) |
| 154 | 153 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π = (𝑋 + (-π − 𝑋))) |
| 155 | 136 | simp2d 1144 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (-π − 𝑋) ≤ 𝑦) |
| 156 | 132, 137,
130, 155 | leadd2dd 11878 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + (-π − 𝑋)) ≤ (𝑋 + 𝑦)) |
| 157 | 154, 156 | eqbrtrd 5165 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π ≤ (𝑋 + 𝑦)) |
| 158 | 136 | simp3d 1145 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑦 ≤ (π − 𝑋)) |
| 159 | 137, 133,
130, 158 | leadd2dd 11878 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑦) ≤ (𝑋 + (π − 𝑋))) |
| 160 | 149 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑋 ∈ ℂ) |
| 161 | 150 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → π ∈
ℂ) |
| 162 | 160, 161 | pncan3d 11623 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + (π − 𝑋)) = π) |
| 163 | 159, 162 | breqtrd 5169 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑦) ≤ π) |
| 164 | 147, 148,
138, 157, 163 | eliccd 45517 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑦) ∈ (-π[,]π)) |
| 165 | | fvres 6925 |
. . . . . . . . . . 11
⊢ ((𝑋 + 𝑦) ∈ (-π[,]π) → ((𝐹 ↾
(-π[,]π))‘(𝑋 +
𝑦)) = (𝐹‘(𝑋 + 𝑦))) |
| 166 | 164, 165 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐹 ↾ (-π[,]π))‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑦))) |
| 167 | 166 | eqcomd 2743 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐹‘(𝑋 + 𝑦)) = ((𝐹 ↾ (-π[,]π))‘(𝑋 + 𝑦))) |
| 168 | 167 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐹‘(𝑋 + 𝑦)) = ((𝐹 ↾ (-π[,]π))‘(𝑋 + 𝑦))) |
| 169 | 168 | oveq1d 7446 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) = (((𝐹 ↾ (-π[,]π))‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦))) |
| 170 | 169 | itgeq2dv 25817 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)[,](π − 𝑋))((𝐹‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦 = ∫((-π − 𝑋)[,](π − 𝑋))(((𝐹 ↾ (-π[,]π))‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦) |
| 171 | 122, 146,
170 | 3eqtrrd 2782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)[,](π − 𝑋))(((𝐹 ↾ (-π[,]π))‘(𝑋 + 𝑦)) · ((𝐷‘𝑛)‘𝑦)) d𝑦 = ∫((-π − 𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
| 172 | 116, 171 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π[,]π)(((𝐹
↾ (-π[,]π))‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡 = ∫((-π − 𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
| 173 | 85, 90, 172 | 3eqtrd 2781 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π(,)π)((𝐹‘𝑡) · ((𝐷‘𝑛)‘(𝑡 − 𝑋))) d𝑡 = ∫((-π − 𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
| 174 | | elioore 13417 |
. . . . . . . . 9
⊢ (𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋)) → 𝑠 ∈ ℝ) |
| 175 | 174 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → 𝑠 ∈ ℝ) |
| 176 | 36 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → 𝐹:ℝ⟶ℂ) |
| 177 | 64 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → 𝑋 ∈ ℝ) |
| 178 | 174 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → 𝑠 ∈ ℝ) |
| 179 | 177, 178 | readdcld 11290 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → (𝑋 + 𝑠) ∈ ℝ) |
| 180 | 176, 179 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 181 | 180 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 182 | 77 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → (𝐷‘𝑛):ℝ⟶ℝ) |
| 183 | 182, 175 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → ((𝐷‘𝑛)‘𝑠) ∈ ℝ) |
| 184 | 183 | recnd 11289 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → ((𝐷‘𝑛)‘𝑠) ∈ ℂ) |
| 185 | 181, 184 | mulcld 11281 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) |
| 186 | | fourierdlem111.g |
. . . . . . . . . 10
⊢ 𝐺 = (𝑥 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥))) |
| 187 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → (𝑋 + 𝑥) = (𝑋 + 𝑠)) |
| 188 | 187 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘(𝑋 + 𝑠))) |
| 189 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → ((𝐷‘𝑛)‘𝑥) = ((𝐷‘𝑛)‘𝑠)) |
| 190 | 188, 189 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑠 → ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
| 191 | 190 | cbvmptv 5255 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥))) = (𝑠 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
| 192 | 186, 191 | eqtri 2765 |
. . . . . . . . 9
⊢ 𝐺 = (𝑠 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
| 193 | 192 | fvmpt2 7027 |
. . . . . . . 8
⊢ ((𝑠 ∈ ℝ ∧ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) → (𝐺‘𝑠) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
| 194 | 175, 185,
193 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → (𝐺‘𝑠) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
| 195 | 194 | eqcomd 2743 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)(,)(π − 𝑋))) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = (𝐺‘𝑠)) |
| 196 | 195 | itgeq2dv 25817 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 = ∫((-π − 𝑋)(,)(π − 𝑋))(𝐺‘𝑠) d𝑠) |
| 197 | 36 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶ℂ) |
| 198 | 64 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑋 ∈ ℝ) |
| 199 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
| 200 | 198, 199 | readdcld 11290 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑋 + 𝑥) ∈ ℝ) |
| 201 | 197, 200 | ffvelcdmd 7105 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑋 + 𝑥)) ∈ ℂ) |
| 202 | 201 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑋 + 𝑥)) ∈ ℂ) |
| 203 | 77 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛):ℝ⟶ℝ) |
| 204 | 203 | ffvelcdmda 7104 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑛)‘𝑥) ∈ ℝ) |
| 205 | 204 | recnd 11289 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑛)‘𝑥) ∈ ℂ) |
| 206 | 202, 205 | mulcld 11281 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥)) ∈ ℂ) |
| 207 | 206, 186 | fmptd 7134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐺:ℝ⟶ℂ) |
| 208 | 207 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝐺:ℝ⟶ℂ) |
| 209 | 124 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (-π − 𝑋) ∈ ℝ) |
| 210 | 127 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (π − 𝑋) ∈ ℝ) |
| 211 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) |
| 212 | | eliccre 45518 |
. . . . . . . . . 10
⊢ (((-π
− 𝑋) ∈ ℝ
∧ (π − 𝑋)
∈ ℝ ∧ 𝑠
∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℝ) |
| 213 | 209, 210,
211, 212 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℝ) |
| 214 | 213 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℝ) |
| 215 | 208, 214 | ffvelcdmd 7105 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐺‘𝑠) ∈ ℂ) |
| 216 | 125, 128,
215 | itgioo 25851 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)(,)(π − 𝑋))(𝐺‘𝑠) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘𝑠) d𝑠) |
| 217 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑠 = 𝑥 → (𝐺‘𝑠) = (𝐺‘𝑥)) |
| 218 | 217 | cbvitgv 25812 |
. . . . . 6
⊢
∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘𝑠) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘𝑥) d𝑥 |
| 219 | 216, 218 | eqtrdi 2793 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)(,)(π − 𝑋))(𝐺‘𝑠) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘𝑥) d𝑥) |
| 220 | 196, 219 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘𝑥) d𝑥) |
| 221 | | eqid 2737 |
. . . . . . 7
⊢ ((π
− 𝑋) − (-π
− 𝑋)) = ((π
− 𝑋) − (-π
− 𝑋)) |
| 222 | 111 | renegcld 11690 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → -𝑋 ∈ ℝ) |
| 223 | | fourierdlem111.o |
. . . . . . 7
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (-π − 𝑋) ∧ (𝑝‘𝑚) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 224 | 31 | fourierdlem2 46124 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 225 | 32, 224 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 226 | 33, 225 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
| 227 | 226 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
| 228 | | elmapi 8889 |
. . . . . . . . . . . . . . 15
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) |
| 229 | 227, 228 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
| 230 | 229 | ffvelcdmda 7104 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 231 | 64 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ) |
| 232 | 230, 231 | resubcld 11691 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑄‘𝑖) − 𝑋) ∈ ℝ) |
| 233 | | fourierdlem111.14 |
. . . . . . . . . . . 12
⊢ 𝑊 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋)) |
| 234 | 232, 233 | fmptd 7134 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊:(0...𝑀)⟶ℝ) |
| 235 | | reex 11246 |
. . . . . . . . . . . . 13
⊢ ℝ
∈ V |
| 236 | | ovex 7464 |
. . . . . . . . . . . . 13
⊢
(0...𝑀) ∈
V |
| 237 | 235, 236 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ (ℝ
∈ V ∧ (0...𝑀)
∈ V) |
| 238 | | elmapg 8879 |
. . . . . . . . . . . 12
⊢ ((ℝ
∈ V ∧ (0...𝑀)
∈ V) → (𝑊 ∈
(ℝ ↑m (0...𝑀)) ↔ 𝑊:(0...𝑀)⟶ℝ)) |
| 239 | 237, 238 | mp1i 13 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑊 ∈ (ℝ ↑m
(0...𝑀)) ↔ 𝑊:(0...𝑀)⟶ℝ)) |
| 240 | 234, 239 | mpbird 257 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ (ℝ ↑m
(0...𝑀))) |
| 241 | 233 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋))) |
| 242 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → (𝑄‘𝑖) = (𝑄‘0)) |
| 243 | 226 | simprd 495 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
| 244 | 243 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π)) |
| 245 | 244 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘0) = -π) |
| 246 | 242, 245 | sylan9eqr 2799 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝑄‘𝑖) = -π) |
| 247 | 246 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑄‘𝑖) − 𝑋) = (-π − 𝑋)) |
| 248 | | 0zd 12625 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈
ℤ) |
| 249 | 32 | nnzd 12640 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 250 | | 0red 11264 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → 0 ∈
ℝ) |
| 251 | | nnre 12273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
| 252 | | nngt0 12297 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → 0 <
𝑀) |
| 253 | 250, 251,
252 | ltled 11409 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℕ → 0 ≤
𝑀) |
| 254 | 32, 253 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤ 𝑀) |
| 255 | | eluz2 12884 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈
(ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 ≤
𝑀)) |
| 256 | 248, 249,
254, 255 | syl3anbrc 1344 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
| 257 | | eluzfz1 13571 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑀)) |
| 258 | 256, 257 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
| 259 | 241, 247,
258, 124 | fvmptd 7023 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑊‘0) = (-π − 𝑋)) |
| 260 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑀 → (𝑄‘𝑖) = (𝑄‘𝑀)) |
| 261 | 244 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘𝑀) = π) |
| 262 | 260, 261 | sylan9eqr 2799 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 = 𝑀) → (𝑄‘𝑖) = π) |
| 263 | 262 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 = 𝑀) → ((𝑄‘𝑖) − 𝑋) = (π − 𝑋)) |
| 264 | | eluzfz2 13572 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈
(ℤ≥‘0) → 𝑀 ∈ (0...𝑀)) |
| 265 | 256, 264 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
| 266 | 241, 263,
265, 127 | fvmptd 7023 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑊‘𝑀) = (π − 𝑋)) |
| 267 | 259, 266 | jca 511 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑊‘0) = (-π − 𝑋) ∧ (𝑊‘𝑀) = (π − 𝑋))) |
| 268 | 229 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 269 | | elfzofz 13715 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
| 270 | 269 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
| 271 | 268, 270 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 272 | | fzofzp1 13803 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
| 273 | 272 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
| 274 | 268, 273 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 275 | 64 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ) |
| 276 | 243 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 277 | 276 | r19.21bi 3251 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 278 | 271, 274,
275, 277 | ltsub1dd 11875 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − 𝑋) < ((𝑄‘(𝑖 + 1)) − 𝑋)) |
| 279 | 270, 232 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − 𝑋) ∈ ℝ) |
| 280 | 233 | fvmpt2 7027 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑄‘𝑖) − 𝑋) ∈ ℝ) → (𝑊‘𝑖) = ((𝑄‘𝑖) − 𝑋)) |
| 281 | 270, 279,
280 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) = ((𝑄‘𝑖) − 𝑋)) |
| 282 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑗 → (𝑄‘𝑖) = (𝑄‘𝑗)) |
| 283 | 282 | oveq1d 7446 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖) − 𝑋) = ((𝑄‘𝑗) − 𝑋)) |
| 284 | 283 | cbvmptv 5255 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) − 𝑋)) |
| 285 | 233, 284 | eqtri 2765 |
. . . . . . . . . . . . . 14
⊢ 𝑊 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) − 𝑋)) |
| 286 | 285 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑊 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) − 𝑋))) |
| 287 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑖 + 1) → (𝑄‘𝑗) = (𝑄‘(𝑖 + 1))) |
| 288 | 287 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑖 + 1) → ((𝑄‘𝑗) − 𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋)) |
| 289 | 288 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑄‘𝑗) − 𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋)) |
| 290 | 274, 275 | resubcld 11691 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ) |
| 291 | 286, 289,
273, 290 | fvmptd 7023 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) = ((𝑄‘(𝑖 + 1)) − 𝑋)) |
| 292 | 278, 281,
291 | 3brtr4d 5175 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) < (𝑊‘(𝑖 + 1))) |
| 293 | 292 | ralrimiva 3146 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑊‘𝑖) < (𝑊‘(𝑖 + 1))) |
| 294 | 240, 267,
293 | jca32 515 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑊‘0) = (-π − 𝑋) ∧ (𝑊‘𝑀) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊‘𝑖) < (𝑊‘(𝑖 + 1))))) |
| 295 | 223 | fourierdlem2 46124 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → (𝑊 ∈ (𝑂‘𝑀) ↔ (𝑊 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑊‘0) = (-π − 𝑋) ∧ (𝑊‘𝑀) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊‘𝑖) < (𝑊‘(𝑖 + 1)))))) |
| 296 | 32, 295 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 ∈ (𝑂‘𝑀) ↔ (𝑊 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑊‘0) = (-π − 𝑋) ∧ (𝑊‘𝑀) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊‘𝑖) < (𝑊‘(𝑖 + 1)))))) |
| 297 | 294, 296 | mpbird 257 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ (𝑂‘𝑀)) |
| 298 | 297 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ (𝑂‘𝑀)) |
| 299 | 150, 151,
149 | nnncan2d 11655 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((π − 𝑋) − (-π − 𝑋)) = (π −
-π)) |
| 300 | | picn 26501 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℂ |
| 301 | 300 | 2timesi 12404 |
. . . . . . . . . . . . 13
⊢ (2
· π) = (π + π) |
| 302 | | fourierdlem111.t |
. . . . . . . . . . . . 13
⊢ 𝑇 = (2 ·
π) |
| 303 | 300, 300 | subnegi 11588 |
. . . . . . . . . . . . 13
⊢ (π
− -π) = (π + π) |
| 304 | 301, 302,
303 | 3eqtr4i 2775 |
. . . . . . . . . . . 12
⊢ 𝑇 = (π −
-π) |
| 305 | 299, 304 | eqtr4di 2795 |
. . . . . . . . . . 11
⊢ (𝜑 → ((π − 𝑋) − (-π − 𝑋)) = 𝑇) |
| 306 | 305 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 + ((π − 𝑋) − (-π − 𝑋))) = (𝑥 + 𝑇)) |
| 307 | 306 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘(𝑥 + ((π − 𝑋) − (-π − 𝑋)))) = (𝐺‘(𝑥 + 𝑇))) |
| 308 | 307 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐺‘(𝑥 + ((π − 𝑋) − (-π − 𝑋)))) = (𝐺‘(𝑥 + 𝑇))) |
| 309 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
| 310 | 186 | fvmpt2 7027 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥)) ∈ ℂ) → (𝐺‘𝑥) = ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥))) |
| 311 | 309, 206,
310 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐺‘𝑥) = ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥))) |
| 312 | 149 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑋 ∈ ℂ) |
| 313 | 199 | recnd 11289 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
| 314 | | 2re 12340 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℝ |
| 315 | 314, 22 | remulcli 11277 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2
· π) ∈ ℝ |
| 316 | 302, 315 | eqeltri 2837 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑇 ∈ ℝ |
| 317 | 316 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 318 | 317 | recnd 11289 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 319 | 318 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℂ) |
| 320 | 312, 313,
319 | addassd 11283 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝑋 + 𝑥) + 𝑇) = (𝑋 + (𝑥 + 𝑇))) |
| 321 | 320 | eqcomd 2743 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑋 + (𝑥 + 𝑇)) = ((𝑋 + 𝑥) + 𝑇)) |
| 322 | 321 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑋 + (𝑥 + 𝑇))) = (𝐹‘((𝑋 + 𝑥) + 𝑇))) |
| 323 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝜑) |
| 324 | 323, 200 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝜑 ∧ (𝑋 + 𝑥) ∈ ℝ)) |
| 325 | | eleq1 2829 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝑋 + 𝑥) → (𝑠 ∈ ℝ ↔ (𝑋 + 𝑥) ∈ ℝ)) |
| 326 | 325 | anbi2d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (𝑋 + 𝑥) → ((𝜑 ∧ 𝑠 ∈ ℝ) ↔ (𝜑 ∧ (𝑋 + 𝑥) ∈ ℝ))) |
| 327 | | oveq1 7438 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝑋 + 𝑥) → (𝑠 + 𝑇) = ((𝑋 + 𝑥) + 𝑇)) |
| 328 | 327 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝑋 + 𝑥) → (𝐹‘(𝑠 + 𝑇)) = (𝐹‘((𝑋 + 𝑥) + 𝑇))) |
| 329 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝑋 + 𝑥) → (𝐹‘𝑠) = (𝐹‘(𝑋 + 𝑥))) |
| 330 | 328, 329 | eqeq12d 2753 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (𝑋 + 𝑥) → ((𝐹‘(𝑠 + 𝑇)) = (𝐹‘𝑠) ↔ (𝐹‘((𝑋 + 𝑥) + 𝑇)) = (𝐹‘(𝑋 + 𝑥)))) |
| 331 | 326, 330 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑋 + 𝑥) → (((𝜑 ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑠 + 𝑇)) = (𝐹‘𝑠)) ↔ ((𝜑 ∧ (𝑋 + 𝑥) ∈ ℝ) → (𝐹‘((𝑋 + 𝑥) + 𝑇)) = (𝐹‘(𝑋 + 𝑥))))) |
| 332 | | eleq1 2829 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑠 → (𝑥 ∈ ℝ ↔ 𝑠 ∈ ℝ)) |
| 333 | 332 | anbi2d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑠 → ((𝜑 ∧ 𝑥 ∈ ℝ) ↔ (𝜑 ∧ 𝑠 ∈ ℝ))) |
| 334 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑠 → (𝑥 + 𝑇) = (𝑠 + 𝑇)) |
| 335 | 334 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑠 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑠 + 𝑇))) |
| 336 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑠 → (𝐹‘𝑥) = (𝐹‘𝑠)) |
| 337 | 335, 336 | eqeq12d 2753 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑠 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘(𝑠 + 𝑇)) = (𝐹‘𝑠))) |
| 338 | 333, 337 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑠 → (((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑠 + 𝑇)) = (𝐹‘𝑠)))) |
| 339 | | fourierdlem111.fper |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
| 340 | 338, 339 | chvarvv 1998 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑠 + 𝑇)) = (𝐹‘𝑠)) |
| 341 | 331, 340 | vtoclg 3554 |
. . . . . . . . . . . . 13
⊢ ((𝑋 + 𝑥) ∈ ℝ → ((𝜑 ∧ (𝑋 + 𝑥) ∈ ℝ) → (𝐹‘((𝑋 + 𝑥) + 𝑇)) = (𝐹‘(𝑋 + 𝑥)))) |
| 342 | 200, 324,
341 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘((𝑋 + 𝑥) + 𝑇)) = (𝐹‘(𝑋 + 𝑥))) |
| 343 | 322, 342 | eqtr2d 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘(𝑋 + (𝑥 + 𝑇)))) |
| 344 | 343 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘(𝑋 + (𝑥 + 𝑇)))) |
| 345 | 67, 302 | dirkerper 46111 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑛)‘(𝑥 + 𝑇)) = ((𝐷‘𝑛)‘𝑥)) |
| 346 | 345 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑛)‘𝑥) = ((𝐷‘𝑛)‘(𝑥 + 𝑇))) |
| 347 | 346 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑛)‘𝑥) = ((𝐷‘𝑛)‘(𝑥 + 𝑇))) |
| 348 | 344, 347 | oveq12d 7449 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥)) = ((𝐹‘(𝑋 + (𝑥 + 𝑇))) · ((𝐷‘𝑛)‘(𝑥 + 𝑇)))) |
| 349 | 192 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐺 = (𝑠 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)))) |
| 350 | | oveq2 7439 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑥 + 𝑇) → (𝑋 + 𝑠) = (𝑋 + (𝑥 + 𝑇))) |
| 351 | 350 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑥 + 𝑇) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑥 + 𝑇)))) |
| 352 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑥 + 𝑇) → ((𝐷‘𝑛)‘𝑠) = ((𝐷‘𝑛)‘(𝑥 + 𝑇))) |
| 353 | 351, 352 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑥 + 𝑇) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = ((𝐹‘(𝑋 + (𝑥 + 𝑇))) · ((𝐷‘𝑛)‘(𝑥 + 𝑇)))) |
| 354 | 353 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑠 = (𝑥 + 𝑇)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = ((𝐹‘(𝑋 + (𝑥 + 𝑇))) · ((𝐷‘𝑛)‘(𝑥 + 𝑇)))) |
| 355 | 316 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) |
| 356 | 309, 355 | readdcld 11290 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 + 𝑇) ∈ ℝ) |
| 357 | 316 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) |
| 358 | 199, 357 | readdcld 11290 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 + 𝑇) ∈ ℝ) |
| 359 | 198, 358 | readdcld 11290 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑋 + (𝑥 + 𝑇)) ∈ ℝ) |
| 360 | 197, 359 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑋 + (𝑥 + 𝑇))) ∈ ℂ) |
| 361 | 360 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑋 + (𝑥 + 𝑇))) ∈ ℂ) |
| 362 | 77 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐷‘𝑛):ℝ⟶ℝ) |
| 363 | 362, 356 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑛)‘(𝑥 + 𝑇)) ∈ ℝ) |
| 364 | 363 | recnd 11289 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑛)‘(𝑥 + 𝑇)) ∈ ℂ) |
| 365 | 361, 364 | mulcld 11281 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘(𝑋 + (𝑥 + 𝑇))) · ((𝐷‘𝑛)‘(𝑥 + 𝑇))) ∈ ℂ) |
| 366 | 349, 354,
356, 365 | fvmptd 7023 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐺‘(𝑥 + 𝑇)) = ((𝐹‘(𝑋 + (𝑥 + 𝑇))) · ((𝐷‘𝑛)‘(𝑥 + 𝑇)))) |
| 367 | 366 | eqcomd 2743 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘(𝑋 + (𝑥 + 𝑇))) · ((𝐷‘𝑛)‘(𝑥 + 𝑇))) = (𝐺‘(𝑥 + 𝑇))) |
| 368 | 311, 348,
367 | 3eqtrrd 2782 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐺‘(𝑥 + 𝑇)) = (𝐺‘𝑥)) |
| 369 | 308, 368 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐺‘(𝑥 + ((π − 𝑋) − (-π − 𝑋)))) = (𝐺‘𝑥)) |
| 370 | 192 | reseq1i 5993 |
. . . . . . . . . 10
⊢ (𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = ((𝑠 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) |
| 371 | 370 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = ((𝑠 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
| 372 | | ioossre 13448 |
. . . . . . . . . 10
⊢ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ℝ |
| 373 | | resmpt 6055 |
. . . . . . . . . 10
⊢ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ℝ → ((𝑠 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)))) |
| 374 | 372, 373 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑠 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
| 375 | 371, 374 | eqtrdi 2793 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)))) |
| 376 | 271 | rexrd 11311 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
ℝ*) |
| 377 | 376 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
| 378 | 274 | rexrd 11311 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 379 | 378 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 380 | 64 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
| 381 | | elioore 13417 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) → 𝑠 ∈ ℝ) |
| 382 | 381 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
| 383 | 380, 382 | readdcld 11290 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ) |
| 384 | 383 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ) |
| 385 | | eleq1 2829 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑠 → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↔ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
| 386 | 385 | anbi2d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑠 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) ↔ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))))) |
| 387 | 187 | breq2d 5155 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑠 → ((𝑄‘𝑖) < (𝑋 + 𝑥) ↔ (𝑄‘𝑖) < (𝑋 + 𝑠))) |
| 388 | 386, 387 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑠 → ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑋 + 𝑥)) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑋 + 𝑠)))) |
| 389 | 149 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ) |
| 390 | 281, 279 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ∈ ℝ) |
| 391 | 390 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ∈ ℂ) |
| 392 | 389, 391 | addcomd 11463 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑊‘𝑖)) = ((𝑊‘𝑖) + 𝑋)) |
| 393 | 281 | oveq1d 7446 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘𝑖) + 𝑋) = (((𝑄‘𝑖) − 𝑋) + 𝑋)) |
| 394 | 271 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℂ) |
| 395 | 394, 389 | npcand 11624 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) − 𝑋) + 𝑋) = (𝑄‘𝑖)) |
| 396 | 392, 393,
395 | 3eqtrrd 2782 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = (𝑋 + (𝑊‘𝑖))) |
| 397 | 396 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) = (𝑋 + (𝑊‘𝑖))) |
| 398 | 390 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) ∈ ℝ) |
| 399 | | elioore 13417 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) → 𝑥 ∈ ℝ) |
| 400 | 399 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
| 401 | 64 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
| 402 | 390 | rexrd 11311 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ∈
ℝ*) |
| 403 | 402 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) ∈
ℝ*) |
| 404 | 291, 290 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) ∈ ℝ) |
| 405 | 404 | rexrd 11311 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) ∈
ℝ*) |
| 406 | 405 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘(𝑖 + 1)) ∈
ℝ*) |
| 407 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) |
| 408 | | ioogtlb 45508 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑊‘𝑖) ∈ ℝ* ∧ (𝑊‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) < 𝑥) |
| 409 | 403, 406,
407, 408 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) < 𝑥) |
| 410 | 398, 400,
401, 409 | ltadd2dd 11420 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + (𝑊‘𝑖)) < (𝑋 + 𝑥)) |
| 411 | 397, 410 | eqbrtrd 5165 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑋 + 𝑥)) |
| 412 | 388, 411 | chvarvv 1998 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑋 + 𝑠)) |
| 413 | 187 | breq1d 5153 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑠 → ((𝑋 + 𝑥) < (𝑄‘(𝑖 + 1)) ↔ (𝑋 + 𝑠) < (𝑄‘(𝑖 + 1)))) |
| 414 | 386, 413 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑠 → ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) < (𝑄‘(𝑖 + 1))) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑄‘(𝑖 + 1))))) |
| 415 | 404 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘(𝑖 + 1)) ∈ ℝ) |
| 416 | | iooltub 45523 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑊‘𝑖) ∈ ℝ* ∧ (𝑊‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑥 < (𝑊‘(𝑖 + 1))) |
| 417 | 403, 406,
407, 416 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑥 < (𝑊‘(𝑖 + 1))) |
| 418 | 400, 415,
401, 417 | ltadd2dd 11420 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) < (𝑋 + (𝑊‘(𝑖 + 1)))) |
| 419 | 404 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) ∈ ℂ) |
| 420 | 389, 419 | addcomd 11463 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑊‘(𝑖 + 1))) = ((𝑊‘(𝑖 + 1)) + 𝑋)) |
| 421 | 291 | oveq1d 7446 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘(𝑖 + 1)) + 𝑋) = (((𝑄‘(𝑖 + 1)) − 𝑋) + 𝑋)) |
| 422 | 274 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
| 423 | 422, 389 | npcand 11624 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑄‘(𝑖 + 1))) |
| 424 | 420, 421,
423 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑊‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1))) |
| 425 | 424 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + (𝑊‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1))) |
| 426 | 418, 425 | breqtrd 5169 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) < (𝑄‘(𝑖 + 1))) |
| 427 | 414, 426 | chvarvv 1998 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑄‘(𝑖 + 1))) |
| 428 | 377, 379,
384, 412, 427 | eliood 45511 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 429 | 187 | cbvmptv 5255 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) |
| 430 | 429 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑠))) |
| 431 | | ioossre 13448 |
. . . . . . . . . . . . . . 15
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ |
| 432 | 431 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) |
| 433 | 11, 432 | feqresmpt 6978 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥))) |
| 434 | 433 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥))) |
| 435 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑋 + 𝑠) → (𝐹‘𝑥) = (𝐹‘(𝑋 + 𝑠))) |
| 436 | 428, 430,
434, 435 | fmptco 7149 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))) |
| 437 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) = (𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) |
| 438 | | ssid 4006 |
. . . . . . . . . . . . . . . . 17
⊢ ℂ
⊆ ℂ |
| 439 | 438 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 440 | 439, 149,
439 | constcncfg 45887 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝑋) ∈ (ℂ–cn→ℂ)) |
| 441 | | cncfmptid 24939 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℂ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) |
| 442 | 438, 438,
441 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ) |
| 443 | 442 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) |
| 444 | 440, 443 | addcncf 25478 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) ∈ (ℂ–cn→ℂ)) |
| 445 | 444 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) ∈ (ℂ–cn→ℂ)) |
| 446 | | ioosscn 13449 |
. . . . . . . . . . . . . 14
⊢ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ℂ |
| 447 | 446 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ℂ) |
| 448 | | ioosscn 13449 |
. . . . . . . . . . . . . 14
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ |
| 449 | 448 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
| 450 | 376 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
| 451 | 378 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 452 | 64 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
| 453 | 399 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
| 454 | 452, 453 | readdcld 11290 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ∈ ℝ) |
| 455 | 454 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ∈ ℝ) |
| 456 | 450, 451,
455, 411, 426 | eliood 45511 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 457 | 437, 445,
447, 449, 456 | cncfmptssg 45886 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 458 | 457, 49 | cncfco 24933 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→ℂ)) |
| 459 | 436, 458 | eqeltrrd 2842 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→ℂ)) |
| 460 | 459 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→ℂ)) |
| 461 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ℝ ↦ ((𝐷‘𝑛)‘𝑠)) = (𝑠 ∈ ℝ ↦ ((𝐷‘𝑛)‘𝑠)) |
| 462 | 77 | feqmptd 6977 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝐷‘𝑛) = (𝑠 ∈ ℝ ↦ ((𝐷‘𝑛)‘𝑠))) |
| 463 | | cncfss 24925 |
. . . . . . . . . . . . . 14
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)) |
| 464 | 34, 438, 463 | mp2an 692 |
. . . . . . . . . . . . 13
⊢
(ℝ–cn→ℝ)
⊆ (ℝ–cn→ℂ) |
| 465 | 67 | dirkercncf 46122 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (𝐷‘𝑛) ∈ (ℝ–cn→ℝ)) |
| 466 | 464, 465 | sselid 3981 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝐷‘𝑛) ∈ (ℝ–cn→ℂ)) |
| 467 | 462, 466 | eqeltrrd 2842 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑛)‘𝑠)) ∈ (ℝ–cn→ℂ)) |
| 468 | 372 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ℝ) |
| 469 | 438 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ℂ
⊆ ℂ) |
| 470 | | cncff 24919 |
. . . . . . . . . . . . . 14
⊢ ((𝐷‘𝑛) ∈ (ℝ–cn→ℂ) → (𝐷‘𝑛):ℝ⟶ℂ) |
| 471 | 466, 470 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (𝐷‘𝑛):ℝ⟶ℂ) |
| 472 | 471 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝐷‘𝑛):ℝ⟶ℂ) |
| 473 | 381 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
| 474 | 472, 473 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝐷‘𝑛)‘𝑠) ∈ ℂ) |
| 475 | 461, 467,
468, 469, 474 | cncfmptssg 45886 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐷‘𝑛)‘𝑠)) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→ℂ)) |
| 476 | 475 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐷‘𝑛)‘𝑠)) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→ℂ)) |
| 477 | 460, 476 | mulcncf 25480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→ℂ)) |
| 478 | 375, 477 | eqeltrd 2841 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) ∈ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))–cn→ℂ)) |
| 479 | 453, 201 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑥)) ∈ ℂ) |
| 480 | 479 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑥)) ∈ ℂ) |
| 481 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) |
| 482 | 480, 481 | fmptd 7134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))):((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))⟶ℂ) |
| 483 | 482 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))):((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))⟶ℂ) |
| 484 | 77 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐷‘𝑛):ℝ⟶ℝ) |
| 485 | 372 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ℝ) |
| 486 | 484, 485 | fssresd 6775 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))):((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))⟶ℝ) |
| 487 | 34 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ℝ ⊆
ℂ) |
| 488 | 486, 487 | fssd 6753 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))):((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))⟶ℂ) |
| 489 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) |
| 490 | | fdm 6745 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹:ℝ⟶ℂ →
dom 𝐹 =
ℝ) |
| 491 | 36, 490 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → dom 𝐹 = ℝ) |
| 492 | 431, 491 | sseqtrrid 4027 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
| 493 | | ssdmres 6031 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 494 | 492, 493 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 495 | 494 | eqcomd 2743 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 496 | 495 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 497 | 456, 496 | eleqtrd 2843 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ∈ dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 498 | 271 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
| 499 | 498, 411 | gtned 11396 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ≠ (𝑄‘𝑖)) |
| 500 | | eldifsn 4786 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)}) ↔ ((𝑋 + 𝑥) ∈ dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ (𝑋 + 𝑥) ≠ (𝑄‘𝑖))) |
| 501 | 497, 499,
500 | sylanbrc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
| 502 | 501 | ralrimiva 3146 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))(𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
| 503 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) |
| 504 | 503 | rnmptss 7143 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))(𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)}) → ran (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
| 505 | 502, 504 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ran (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
| 506 | | eqidd 2738 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = (𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) |
| 507 | | oveq2 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑊‘𝑖) → (𝑋 + 𝑥) = (𝑋 + (𝑊‘𝑖))) |
| 508 | 507 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑊‘𝑖)) → (𝑋 + 𝑥) = (𝑋 + (𝑊‘𝑖))) |
| 509 | 390 | leidd 11829 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ≤ (𝑊‘𝑖)) |
| 510 | 390, 404,
292 | ltled 11409 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ≤ (𝑊‘(𝑖 + 1))) |
| 511 | 390, 404,
390, 509, 510 | eliccd 45517 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) |
| 512 | 396, 271 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑊‘𝑖)) ∈ ℝ) |
| 513 | 506, 508,
511, 512 | fvmptd 7023 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘(𝑊‘𝑖)) = (𝑋 + (𝑊‘𝑖))) |
| 514 | 396 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑊‘𝑖)) = (𝑄‘𝑖)) |
| 515 | 513, 514 | eqtr2d 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘(𝑊‘𝑖))) |
| 516 | 390, 404 | iccssred 13474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ⊆ ℝ) |
| 517 | 516, 34 | sstrdi 3996 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ⊆ ℂ) |
| 518 | 517 | resmptd 6058 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) |
| 519 | | rescncf 24923 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ∈ (((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))–cn→ℂ))) |
| 520 | 517, 445,
519 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ℂ ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ∈ (((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))–cn→ℂ)) |
| 521 | 518, 520 | eqeltrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ∈ (((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))–cn→ℂ)) |
| 522 | 521, 511 | cnlimci 25924 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘(𝑊‘𝑖)) ∈ ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘𝑖))) |
| 523 | 515, 522 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘𝑖))) |
| 524 | | ioossicc 13473 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) |
| 525 | | resmpt 6055 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) |
| 526 | 524, 525 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) |
| 527 | 526 | eqcomi 2746 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) |
| 528 | 527 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
| 529 | 528 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘𝑖)) = (((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
| 530 | 149 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → 𝑋 ∈ ℂ) |
| 531 | 390 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) ∈ ℝ) |
| 532 | 404 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → (𝑊‘(𝑖 + 1)) ∈ ℝ) |
| 533 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) |
| 534 | | eliccre 45518 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑊‘𝑖) ∈ ℝ ∧ (𝑊‘(𝑖 + 1)) ∈ ℝ ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
| 535 | 531, 532,
533, 534 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → 𝑥 ∈ ℝ) |
| 536 | 535 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → 𝑥 ∈ ℂ) |
| 537 | 530, 536 | addcld 11280 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ∈ ℂ) |
| 538 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = (𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) |
| 539 | 537, 538 | fmptd 7134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)):((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))⟶ℂ) |
| 540 | 390, 404,
292, 539 | limciccioolb 45636 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖)) = ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘𝑖))) |
| 541 | 529, 540 | eqtr2d 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘𝑖)) = ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘𝑖))) |
| 542 | 523, 541 | eleqtrd 2843 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘𝑖))) |
| 543 | 505, 542,
51 | limccog 45635 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) limℂ (𝑊‘𝑖))) |
| 544 | 36, 432 | fssresd 6775 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
| 545 | 544 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
| 546 | 456, 503 | fmptd 7134 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)):((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))⟶((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 547 | | fcompt 7153 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ∧ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)):((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))⟶((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) = (𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦)))) |
| 548 | 545, 546,
547 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) = (𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦)))) |
| 549 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) |
| 550 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑦 → (𝑋 + 𝑥) = (𝑋 + 𝑦)) |
| 551 | 550 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) ∧ 𝑥 = 𝑦) → (𝑋 + 𝑥) = (𝑋 + 𝑦)) |
| 552 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) |
| 553 | 64 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
| 554 | 372, 552 | sselid 3981 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑦 ∈ ℝ) |
| 555 | 553, 554 | readdcld 11290 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑦) ∈ ℝ) |
| 556 | 549, 551,
552, 555 | fvmptd 7023 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦) = (𝑋 + 𝑦)) |
| 557 | 556 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑦))) |
| 558 | 557 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑦))) |
| 559 | 376 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
| 560 | 378 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 561 | 555 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑦) ∈ ℝ) |
| 562 | 396 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) = (𝑋 + (𝑊‘𝑖))) |
| 563 | 390 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) ∈ ℝ) |
| 564 | 554 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑦 ∈ ℝ) |
| 565 | 64 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
| 566 | 402 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) ∈
ℝ*) |
| 567 | 405 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘(𝑖 + 1)) ∈
ℝ*) |
| 568 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) |
| 569 | | ioogtlb 45508 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑊‘𝑖) ∈ ℝ* ∧ (𝑊‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) < 𝑦) |
| 570 | 566, 567,
568, 569 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘𝑖) < 𝑦) |
| 571 | 563, 564,
565, 570 | ltadd2dd 11420 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + (𝑊‘𝑖)) < (𝑋 + 𝑦)) |
| 572 | 562, 571 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑋 + 𝑦)) |
| 573 | 404 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑊‘(𝑖 + 1)) ∈ ℝ) |
| 574 | | iooltub 45523 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑊‘𝑖) ∈ ℝ* ∧ (𝑊‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑦 < (𝑊‘(𝑖 + 1))) |
| 575 | 566, 567,
568, 574 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑦 < (𝑊‘(𝑖 + 1))) |
| 576 | 564, 573,
565, 575 | ltadd2dd 11420 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑦) < (𝑋 + (𝑊‘(𝑖 + 1)))) |
| 577 | 424 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + (𝑊‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1))) |
| 578 | 576, 577 | breqtrd 5169 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑦) < (𝑄‘(𝑖 + 1))) |
| 579 | 559, 560,
561, 572, 578 | eliood 45511 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑦) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 580 | | fvres 6925 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 + 𝑦) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑦))) |
| 581 | 579, 580 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑦))) |
| 582 | 558, 581 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦)) = (𝐹‘(𝑋 + 𝑦))) |
| 583 | 582 | mpteq2dva 5242 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦))) = (𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑦)))) |
| 584 | 550 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘(𝑋 + 𝑦))) |
| 585 | 584 | cbvmptv 5255 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) = (𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑦))) |
| 586 | 583, 585 | eqtr4di 2795 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑦 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘𝑦))) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))) |
| 587 | 548, 586 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))) |
| 588 | 587 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) limℂ (𝑊‘𝑖)) = ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) limℂ (𝑊‘𝑖))) |
| 589 | 543, 588 | eleqtrd 2843 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) limℂ (𝑊‘𝑖))) |
| 590 | 589 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) limℂ (𝑊‘𝑖))) |
| 591 | | fvres 6925 |
. . . . . . . . . . . . . 14
⊢ ((𝑊‘𝑖) ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘𝑖)) = ((𝐷‘𝑛)‘(𝑊‘𝑖))) |
| 592 | 511, 591 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘𝑖)) = ((𝐷‘𝑛)‘(𝑊‘𝑖))) |
| 593 | 592 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛)‘(𝑊‘𝑖)) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘𝑖))) |
| 594 | 593 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛)‘(𝑊‘𝑖)) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘𝑖))) |
| 595 | 516 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ⊆ ℝ) |
| 596 | 465 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐷‘𝑛) ∈ (ℝ–cn→ℝ)) |
| 597 | | rescncf 24923 |
. . . . . . . . . . . . 13
⊢ (((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ⊆ ℝ → ((𝐷‘𝑛) ∈ (ℝ–cn→ℝ) → ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ∈ (((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))–cn→ℝ))) |
| 598 | 595, 596,
597 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ∈ (((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))–cn→ℝ)) |
| 599 | 511 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) |
| 600 | 598, 599 | cnlimci 25924 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘𝑖)) ∈ (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
| 601 | 594, 600 | eqeltrd 2841 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛)‘(𝑊‘𝑖)) ∈ (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
| 602 | 524 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) |
| 603 | 602 | resabs1d 6026 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
| 604 | 603 | eqcomd 2743 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
| 605 | 604 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖)) = ((((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
| 606 | 605 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖)) = ((((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
| 607 | 390 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) ∈ ℝ) |
| 608 | 404 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) ∈ ℝ) |
| 609 | 292 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘𝑖) < (𝑊‘(𝑖 + 1))) |
| 610 | 471 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐷‘𝑛):ℝ⟶ℂ) |
| 611 | 610, 595 | fssresd 6775 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))):((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))⟶ℂ) |
| 612 | 607, 608,
609, 611 | limciccioolb 45636 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖)) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
| 613 | 606, 612 | eqtr2d 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖)) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
| 614 | 601, 613 | eleqtrd 2843 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛)‘(𝑊‘𝑖)) ∈ (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
| 615 | 483, 488,
489, 590, 614 | mullimcf 45638 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷‘𝑛)‘(𝑊‘𝑖))) ∈ ((𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) limℂ (𝑊‘𝑖))) |
| 616 | | eqidd 2738 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) = (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))) |
| 617 | 188 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) ∧ 𝑥 = 𝑠) → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘(𝑋 + 𝑠))) |
| 618 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) |
| 619 | 36 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → 𝐹:ℝ⟶ℂ) |
| 620 | 619, 383 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 621 | 620 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 622 | 616, 617,
618, 621 | fvmptd 7023 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) = (𝐹‘(𝑋 + 𝑠))) |
| 623 | 622 | adantllr 719 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) = (𝐹‘(𝑋 + 𝑠))) |
| 624 | | fvres 6925 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠) = ((𝐷‘𝑛)‘𝑠)) |
| 625 | 624 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠) = ((𝐷‘𝑛)‘𝑠)) |
| 626 | 623, 625 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
| 627 | 626 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) |
| 628 | 627 | mpteq2dva 5242 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) = (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠)))) |
| 629 | 375, 628 | eqtr2d 2778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) = (𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
| 630 | 629 | oveq1d 7446 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) limℂ (𝑊‘𝑖)) = ((𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
| 631 | 615, 630 | eleqtrd 2843 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷‘𝑛)‘(𝑊‘𝑖))) ∈ ((𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘𝑖))) |
| 632 | 455, 426 | ltned 11397 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ≠ (𝑄‘(𝑖 + 1))) |
| 633 | | eldifsn 4786 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}) ↔ ((𝑋 + 𝑥) ∈ dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ (𝑋 + 𝑥) ≠ (𝑄‘(𝑖 + 1)))) |
| 634 | 497, 632,
633 | sylanbrc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) → (𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
| 635 | 634 | ralrimiva 3146 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))(𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
| 636 | 503 | rnmptss 7143 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))(𝑋 + 𝑥) ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}) → ran (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
| 637 | 635, 636 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ran (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
| 638 | 404 | leidd 11829 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) ≤ (𝑊‘(𝑖 + 1))) |
| 639 | 390, 404,
404, 510, 638 | eliccd 45517 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) |
| 640 | 521, 639 | cnlimci 25924 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘(𝑊‘(𝑖 + 1))) ∈ ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘(𝑖 + 1)))) |
| 641 | | oveq2 7439 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑊‘(𝑖 + 1)) → (𝑋 + 𝑥) = (𝑋 + (𝑊‘(𝑖 + 1)))) |
| 642 | 641 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑊‘(𝑖 + 1))) → (𝑋 + 𝑥) = (𝑋 + (𝑊‘(𝑖 + 1)))) |
| 643 | 275, 404 | readdcld 11290 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑊‘(𝑖 + 1))) ∈ ℝ) |
| 644 | 506, 642,
639, 643 | fvmptd 7023 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘(𝑊‘(𝑖 + 1))) = (𝑋 + (𝑊‘(𝑖 + 1)))) |
| 645 | 644, 424 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))‘(𝑊‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1))) |
| 646 | 528 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘(𝑖 + 1))) = (((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
| 647 | 390, 404,
292, 539 | limcicciooub 45652 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1))) = ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘(𝑖 + 1)))) |
| 648 | 646, 647 | eqtr2d 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑥 ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘(𝑖 + 1))) = ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘(𝑖 + 1)))) |
| 649 | 640, 645,
648 | 3eltr3d 2855 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥)) limℂ (𝑊‘(𝑖 + 1)))) |
| 650 | 637, 649,
54 | limccog 45635 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) limℂ (𝑊‘(𝑖 + 1)))) |
| 651 | 587 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝑋 + 𝑥))) limℂ (𝑊‘(𝑖 + 1))) = ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) limℂ (𝑊‘(𝑖 + 1)))) |
| 652 | 650, 651 | eleqtrd 2843 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) limℂ (𝑊‘(𝑖 + 1)))) |
| 653 | 652 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥))) limℂ (𝑊‘(𝑖 + 1)))) |
| 654 | 639 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑊‘(𝑖 + 1)) ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) |
| 655 | 598, 654 | cnlimci 25924 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘(𝑖 + 1))) ∈ (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
| 656 | | fvres 6925 |
. . . . . . . . . . 11
⊢ ((𝑊‘(𝑖 + 1)) ∈ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘(𝑖 + 1))) = ((𝐷‘𝑛)‘(𝑊‘(𝑖 + 1)))) |
| 657 | 654, 656 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))))‘(𝑊‘(𝑖 + 1))) = ((𝐷‘𝑛)‘(𝑊‘(𝑖 + 1)))) |
| 658 | 607, 608,
609, 611 | limcicciooub 45652 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1))) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
| 659 | 658 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1))) = ((((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
| 660 | | resabs1 6024 |
. . . . . . . . . . . . 13
⊢ (((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ⊆ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1))) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
| 661 | 524, 660 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) = ((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))) |
| 662 | 661 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1))) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
| 663 | 659, 662 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)[,](𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1))) = (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
| 664 | 655, 657,
663 | 3eltr3d 2855 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑛)‘(𝑊‘(𝑖 + 1))) ∈ (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
| 665 | 483, 488,
489, 653, 664 | mullimcf 45638 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐿 · ((𝐷‘𝑛)‘(𝑊‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) limℂ (𝑊‘(𝑖 + 1)))) |
| 666 | 629 | oveq1d 7446 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (((𝑥 ∈ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑥)))‘𝑠) · (((𝐷‘𝑛) ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1))))‘𝑠))) limℂ (𝑊‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
| 667 | 665, 666 | eleqtrd 2843 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐿 · ((𝐷‘𝑛)‘(𝑊‘(𝑖 + 1)))) ∈ ((𝐺 ↾ ((𝑊‘𝑖)(,)(𝑊‘(𝑖 + 1)))) limℂ (𝑊‘(𝑖 + 1)))) |
| 668 | 125, 128,
221, 222, 223, 109, 298, 207, 369, 478, 631, 667 | fourierdlem110 46231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫(((-π −
𝑋) − -𝑋)[,]((π − 𝑋) − -𝑋))(𝐺‘𝑥) d𝑥 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘𝑥) d𝑥) |
| 669 | 668 | eqcomd 2743 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)[,](π − 𝑋))(𝐺‘𝑥) d𝑥 = ∫(((-π − 𝑋) − -𝑋)[,]((π − 𝑋) − -𝑋))(𝐺‘𝑥) d𝑥) |
| 670 | 124 | recnd 11289 |
. . . . . . . . . 10
⊢ (𝜑 → (-π − 𝑋) ∈
ℂ) |
| 671 | 670, 149 | subnegd 11627 |
. . . . . . . . 9
⊢ (𝜑 → ((-π − 𝑋) − -𝑋) = ((-π − 𝑋) + 𝑋)) |
| 672 | 151, 149 | npcand 11624 |
. . . . . . . . 9
⊢ (𝜑 → ((-π − 𝑋) + 𝑋) = -π) |
| 673 | 671, 672 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝜑 → ((-π − 𝑋) − -𝑋) = -π) |
| 674 | 127 | recnd 11289 |
. . . . . . . . . 10
⊢ (𝜑 → (π − 𝑋) ∈
ℂ) |
| 675 | 674, 149 | subnegd 11627 |
. . . . . . . . 9
⊢ (𝜑 → ((π − 𝑋) − -𝑋) = ((π − 𝑋) + 𝑋)) |
| 676 | 150, 149 | npcand 11624 |
. . . . . . . . 9
⊢ (𝜑 → ((π − 𝑋) + 𝑋) = π) |
| 677 | 675, 676 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝜑 → ((π − 𝑋) − -𝑋) = π) |
| 678 | 673, 677 | oveq12d 7449 |
. . . . . . 7
⊢ (𝜑 → (((-π − 𝑋) − -𝑋)[,]((π − 𝑋) − -𝑋)) = (-π[,]π)) |
| 679 | 678 | itgeq1d 45972 |
. . . . . 6
⊢ (𝜑 → ∫(((-π −
𝑋) − -𝑋)[,]((π − 𝑋) − -𝑋))(𝐺‘𝑥) d𝑥 = ∫(-π[,]π)(𝐺‘𝑥) d𝑥) |
| 680 | 679 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫(((-π −
𝑋) − -𝑋)[,]((π − 𝑋) − -𝑋))(𝐺‘𝑥) d𝑥 = ∫(-π[,]π)(𝐺‘𝑥) d𝑥) |
| 681 | 669, 680 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)[,](π − 𝑋))(𝐺‘𝑥) d𝑥 = ∫(-π[,]π)(𝐺‘𝑥) d𝑥) |
| 682 | | fveq2 6906 |
. . . . . 6
⊢ (𝑥 = 𝑠 → (𝐺‘𝑥) = (𝐺‘𝑠)) |
| 683 | 682 | cbvitgv 25812 |
. . . . 5
⊢
∫(-π(,)π)(𝐺‘𝑥) d𝑥 = ∫(-π(,)π)(𝐺‘𝑠) d𝑠 |
| 684 | 207 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (-π[,]π)) → 𝐺:ℝ⟶ℂ) |
| 685 | 28 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (-π[,]π)) → 𝑥 ∈
ℝ) |
| 686 | 684, 685 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (-π[,]π)) → (𝐺‘𝑥) ∈ ℂ) |
| 687 | 71, 72, 686 | itgioo 25851 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π(,)π)(𝐺‘𝑥) d𝑥 = ∫(-π[,]π)(𝐺‘𝑥) d𝑥) |
| 688 | | elioore 13417 |
. . . . . . . 8
⊢ (𝑠 ∈ (-π(,)π) →
𝑠 ∈
ℝ) |
| 689 | 688 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)π)) → 𝑠 ∈
ℝ) |
| 690 | 36 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (-π(,)π)) → 𝐹:ℝ⟶ℂ) |
| 691 | 64 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (-π(,)π)) → 𝑋 ∈
ℝ) |
| 692 | 688 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (-π(,)π)) → 𝑠 ∈
ℝ) |
| 693 | 691, 692 | readdcld 11290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (-π(,)π)) → (𝑋 + 𝑠) ∈ ℝ) |
| 694 | 690, 693 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (-π(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 695 | 694 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 696 | 77 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)π)) → (𝐷‘𝑛):ℝ⟶ℝ) |
| 697 | 696, 689 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)π)) → ((𝐷‘𝑛)‘𝑠) ∈ ℝ) |
| 698 | 697 | recnd 11289 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)π)) → ((𝐷‘𝑛)‘𝑠) ∈ ℂ) |
| 699 | 695, 698 | mulcld 11281 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) |
| 700 | 689, 699,
193 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)π)) → (𝐺‘𝑠) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
| 701 | 700 | itgeq2dv 25817 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π(,)π)(𝐺‘𝑠) d𝑠 = ∫(-π(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
| 702 | 683, 687,
701 | 3eqtr3a 2801 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π[,]π)(𝐺‘𝑥) d𝑥 = ∫(-π(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
| 703 | 220, 681,
702 | 3eqtrd 2781 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫((-π −
𝑋)(,)(π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 = ∫(-π(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
| 704 | 70, 173, 703 | 3eqtrd 2781 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑆‘𝑛) = ∫(-π(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) |
| 705 | 72 | renegcld 11690 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → -π ∈
ℝ) |
| 706 | | 0red 11264 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ∈
ℝ) |
| 707 | | 0re 11263 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 708 | | negpilt0 45292 |
. . . . . 6
⊢ -π
< 0 |
| 709 | 23, 707, 708 | ltleii 11384 |
. . . . 5
⊢ -π
≤ 0 |
| 710 | 709 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → -π ≤
0) |
| 711 | | pipos 26502 |
. . . . . 6
⊢ 0 <
π |
| 712 | 707, 22, 711 | ltleii 11384 |
. . . . 5
⊢ 0 ≤
π |
| 713 | 712 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤
π) |
| 714 | 71, 72, 706, 710, 713 | eliccd 45517 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ∈
(-π[,]π)) |
| 715 | | ioossicc 13473 |
. . . . 5
⊢
(-π(,)0) ⊆ (-π[,]0) |
| 716 | 715 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (-π(,)0) ⊆
(-π[,]0)) |
| 717 | | ioombl 25600 |
. . . . 5
⊢
(-π(,)0) ∈ dom vol |
| 718 | 717 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (-π(,)0) ∈
dom vol) |
| 719 | 36 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]0)) → 𝐹:ℝ⟶ℂ) |
| 720 | 64 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]0)) → 𝑋 ∈ ℝ) |
| 721 | 23 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (-π[,]0) → -π
∈ ℝ) |
| 722 | | 0red 11264 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (-π[,]0) → 0
∈ ℝ) |
| 723 | | id 22 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (-π[,]0) → 𝑠 ∈
(-π[,]0)) |
| 724 | | eliccre 45518 |
. . . . . . . . . 10
⊢ ((-π
∈ ℝ ∧ 0 ∈ ℝ ∧ 𝑠 ∈ (-π[,]0)) → 𝑠 ∈
ℝ) |
| 725 | 721, 722,
723, 724 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝑠 ∈ (-π[,]0) → 𝑠 ∈
ℝ) |
| 726 | 725 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]0)) → 𝑠 ∈
ℝ) |
| 727 | 720, 726 | readdcld 11290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]0)) → (𝑋 + 𝑠) ∈ ℝ) |
| 728 | 719, 727 | ffvelcdmd 7105 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]0)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 729 | 728 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 730 | 77 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → (𝐷‘𝑛):ℝ⟶ℝ) |
| 731 | 725 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → 𝑠 ∈
ℝ) |
| 732 | 730, 731 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → ((𝐷‘𝑛)‘𝑠) ∈ ℝ) |
| 733 | 732 | recnd 11289 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → ((𝐷‘𝑛)‘𝑠) ∈ ℂ) |
| 734 | 729, 733 | mulcld 11281 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) |
| 735 | 731, 734,
193 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → (𝐺‘𝑠) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
| 736 | 735 | eqcomd 2743 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = (𝐺‘𝑠)) |
| 737 | 736 | mpteq2dva 5242 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]0) ↦ (𝐺‘𝑠))) |
| 738 | 305 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 + ((π − 𝑋) − (-π − 𝑋))) = (𝑠 + 𝑇)) |
| 739 | 738 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝑠 + ((π − 𝑋) − (-π − 𝑋))) = (𝑠 + 𝑇)) |
| 740 | 739 | fveq2d 6910 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐺‘(𝑠 + ((π − 𝑋) − (-π − 𝑋)))) = (𝐺‘(𝑠 + 𝑇))) |
| 741 | 186 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → 𝐺 = (𝑥 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥)))) |
| 742 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑠 + 𝑇) → (𝑋 + 𝑥) = (𝑋 + (𝑠 + 𝑇))) |
| 743 | 742 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑠 + 𝑇) → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘(𝑋 + (𝑠 + 𝑇)))) |
| 744 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑠 + 𝑇) → ((𝐷‘𝑛)‘𝑥) = ((𝐷‘𝑛)‘(𝑠 + 𝑇))) |
| 745 | 743, 744 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑥 = (𝑠 + 𝑇) → ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥)) = ((𝐹‘(𝑋 + (𝑠 + 𝑇))) · ((𝐷‘𝑛)‘(𝑠 + 𝑇)))) |
| 746 | 745 | adantl 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) ∧ 𝑥 = (𝑠 + 𝑇)) → ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥)) = ((𝐹‘(𝑋 + (𝑠 + 𝑇))) · ((𝐷‘𝑛)‘(𝑠 + 𝑇)))) |
| 747 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝑠 ∈ ℝ) |
| 748 | 316 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝑇 ∈ ℝ) |
| 749 | 747, 748 | readdcld 11290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝑠 + 𝑇) ∈ ℝ) |
| 750 | 749 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝑠 + 𝑇) ∈ ℝ) |
| 751 | 36 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝐹:ℝ⟶ℂ) |
| 752 | 64 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝑋 ∈ ℝ) |
| 753 | 752, 749 | readdcld 11290 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝑋 + (𝑠 + 𝑇)) ∈ ℝ) |
| 754 | 751, 753 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑋 + (𝑠 + 𝑇))) ∈ ℂ) |
| 755 | 754 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑋 + (𝑠 + 𝑇))) ∈ ℂ) |
| 756 | 77 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐷‘𝑛):ℝ⟶ℝ) |
| 757 | 756, 750 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑛)‘(𝑠 + 𝑇)) ∈ ℝ) |
| 758 | 757 | recnd 11289 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑛)‘(𝑠 + 𝑇)) ∈ ℂ) |
| 759 | 755, 758 | mulcld 11281 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐹‘(𝑋 + (𝑠 + 𝑇))) · ((𝐷‘𝑛)‘(𝑠 + 𝑇))) ∈ ℂ) |
| 760 | 741, 746,
750, 759 | fvmptd 7023 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐺‘(𝑠 + 𝑇)) = ((𝐹‘(𝑋 + (𝑠 + 𝑇))) · ((𝐷‘𝑛)‘(𝑠 + 𝑇)))) |
| 761 | 149 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝑋 ∈ ℂ) |
| 762 | 747 | recnd 11289 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝑠 ∈ ℂ) |
| 763 | 318 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝑇 ∈ ℂ) |
| 764 | 761, 762,
763 | addassd 11283 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → ((𝑋 + 𝑠) + 𝑇) = (𝑋 + (𝑠 + 𝑇))) |
| 765 | 764 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝑋 + (𝑠 + 𝑇)) = ((𝑋 + 𝑠) + 𝑇)) |
| 766 | 765 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑋 + (𝑠 + 𝑇))) = (𝐹‘((𝑋 + 𝑠) + 𝑇))) |
| 767 | 752, 747 | readdcld 11290 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝑋 + 𝑠) ∈ ℝ) |
| 768 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → 𝜑) |
| 769 | 768, 767 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝜑 ∧ (𝑋 + 𝑠) ∈ ℝ)) |
| 770 | | eleq1 2829 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑋 + 𝑠) → (𝑥 ∈ ℝ ↔ (𝑋 + 𝑠) ∈ ℝ)) |
| 771 | 770 | anbi2d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑋 + 𝑠) → ((𝜑 ∧ 𝑥 ∈ ℝ) ↔ (𝜑 ∧ (𝑋 + 𝑠) ∈ ℝ))) |
| 772 | | oveq1 7438 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑋 + 𝑠) → (𝑥 + 𝑇) = ((𝑋 + 𝑠) + 𝑇)) |
| 773 | 772 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑋 + 𝑠) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘((𝑋 + 𝑠) + 𝑇))) |
| 774 | 773, 435 | eqeq12d 2753 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑋 + 𝑠) → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘((𝑋 + 𝑠) + 𝑇)) = (𝐹‘(𝑋 + 𝑠)))) |
| 775 | 771, 774 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑋 + 𝑠) → (((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ (𝑋 + 𝑠) ∈ ℝ) → (𝐹‘((𝑋 + 𝑠) + 𝑇)) = (𝐹‘(𝑋 + 𝑠))))) |
| 776 | 775, 339 | vtoclg 3554 |
. . . . . . . . . . . 12
⊢ ((𝑋 + 𝑠) ∈ ℝ → ((𝜑 ∧ (𝑋 + 𝑠) ∈ ℝ) → (𝐹‘((𝑋 + 𝑠) + 𝑇)) = (𝐹‘(𝑋 + 𝑠)))) |
| 777 | 767, 769,
776 | sylc 65 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝐹‘((𝑋 + 𝑠) + 𝑇)) = (𝐹‘(𝑋 + 𝑠))) |
| 778 | 766, 777 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑋 + (𝑠 + 𝑇))) = (𝐹‘(𝑋 + 𝑠))) |
| 779 | 778 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐹‘(𝑋 + (𝑠 + 𝑇))) = (𝐹‘(𝑋 + 𝑠))) |
| 780 | 67, 302 | dirkerper 46111 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑛)‘(𝑠 + 𝑇)) = ((𝐷‘𝑛)‘𝑠)) |
| 781 | 780 | adantll 714 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑛)‘(𝑠 + 𝑇)) = ((𝐷‘𝑛)‘𝑠)) |
| 782 | 779, 781 | oveq12d 7449 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐹‘(𝑋 + (𝑠 + 𝑇))) · ((𝐷‘𝑛)‘(𝑠 + 𝑇))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
| 783 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → 𝑠 ∈ ℝ) |
| 784 | 782, 759 | eqeltrrd 2842 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) |
| 785 | 783, 784,
193 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐺‘𝑠) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
| 786 | 785 | eqcomd 2743 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = (𝐺‘𝑠)) |
| 787 | 782, 786 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → ((𝐹‘(𝑋 + (𝑠 + 𝑇))) · ((𝐷‘𝑛)‘(𝑠 + 𝑇))) = (𝐺‘𝑠)) |
| 788 | 740, 760,
787 | 3eqtrd 2781 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ ℝ) → (𝐺‘(𝑠 + ((π − 𝑋) − (-π − 𝑋)))) = (𝐺‘𝑠)) |
| 789 | | 0ltpnf 13164 |
. . . . . . . 8
⊢ 0 <
+∞ |
| 790 | | pnfxr 11315 |
. . . . . . . . 9
⊢ +∞
∈ ℝ* |
| 791 | | elioo2 13428 |
. . . . . . . . 9
⊢ ((-π
∈ ℝ* ∧ +∞ ∈ ℝ*) → (0
∈ (-π(,)+∞) ↔ (0 ∈ ℝ ∧ -π < 0 ∧ 0
< +∞))) |
| 792 | 39, 790, 791 | mp2an 692 |
. . . . . . . 8
⊢ (0 ∈
(-π(,)+∞) ↔ (0 ∈ ℝ ∧ -π < 0 ∧ 0 <
+∞)) |
| 793 | 707, 708,
789, 792 | mpbir3an 1342 |
. . . . . . 7
⊢ 0 ∈
(-π(,)+∞) |
| 794 | 793 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ∈
(-π(,)+∞)) |
| 795 | 223, 221,
109, 298, 207, 788, 478, 631, 667, 71, 794 | fourierdlem105 46226 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]0) ↦ (𝐺‘𝑠)) ∈
𝐿1) |
| 796 | 737, 795 | eqeltrd 2841 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ∈
𝐿1) |
| 797 | 716, 718,
734, 796 | iblss 25840 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ∈
𝐿1) |
| 798 | | elioore 13417 |
. . . . . . . 8
⊢ (𝑠 ∈ (0(,)π) → 𝑠 ∈
ℝ) |
| 799 | 798 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ) |
| 800 | 799, 784 | syldan 591 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) ∈ ℂ) |
| 801 | 799, 800,
193 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐺‘𝑠) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) |
| 802 | 801 | eqcomd 2743 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) = (𝐺‘𝑠)) |
| 803 | 802 | mpteq2dva 5242 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) = (𝑠 ∈ (0(,)π) ↦ (𝐺‘𝑠))) |
| 804 | | ioossicc 13473 |
. . . . . 6
⊢
(0(,)π) ⊆ (0[,]π) |
| 805 | 804 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (0(,)π) ⊆
(0[,]π)) |
| 806 | | ioombl 25600 |
. . . . . 6
⊢
(0(,)π) ∈ dom vol |
| 807 | 806 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (0(,)π) ∈ dom
vol) |
| 808 | 207 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0[,]π)) → 𝐺:ℝ⟶ℂ) |
| 809 | | 0red 11264 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]π)) → 0 ∈
ℝ) |
| 810 | 22 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]π)) → π ∈
ℝ) |
| 811 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]π)) → 𝑠 ∈ (0[,]π)) |
| 812 | | eliccre 45518 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ π ∈ ℝ ∧ 𝑠 ∈ (0[,]π)) → 𝑠 ∈ ℝ) |
| 813 | 809, 810,
811, 812 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]π)) → 𝑠 ∈ ℝ) |
| 814 | 813 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0[,]π)) → 𝑠 ∈ ℝ) |
| 815 | 808, 814 | ffvelcdmd 7105 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0[,]π)) → (𝐺‘𝑠) ∈ ℂ) |
| 816 | | 0xr 11308 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
| 817 | 816 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ∈
ℝ*) |
| 818 | 790 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → +∞ ∈
ℝ*) |
| 819 | 711 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 <
π) |
| 820 | | ltpnf 13162 |
. . . . . . . 8
⊢ (π
∈ ℝ → π < +∞) |
| 821 | 22, 820 | mp1i 13 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → π <
+∞) |
| 822 | 817, 818,
72, 819, 821 | eliood 45511 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → π ∈
(0(,)+∞)) |
| 823 | 223, 221,
109, 298, 207, 788, 478, 631, 667, 706, 822 | fourierdlem105 46226 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (0[,]π) ↦ (𝐺‘𝑠)) ∈
𝐿1) |
| 824 | 805, 807,
815, 823 | iblss 25840 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ (𝐺‘𝑠)) ∈
𝐿1) |
| 825 | 803, 824 | eqeltrd 2841 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠))) ∈
𝐿1) |
| 826 | 705, 72, 714, 699, 797, 825 | itgsplitioo 25873 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
∫(-π(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠)) |
| 827 | 704, 826 | eqtrd 2777 |
1
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑆‘𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠)) |