MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnnei Structured version   Visualization version   GIF version

Theorem opnnei 21720
Description: A set is open iff it is a neighborhood of all of its points. (Contributed by Jeff Hankins, 15-Sep-2009.)
Assertion
Ref Expression
opnnei (𝐽 ∈ Top → (𝑆𝐽 ↔ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆

Proof of Theorem opnnei
StepHypRef Expression
1 0opn 21504 . . . . 5 (𝐽 ∈ Top → ∅ ∈ 𝐽)
21adantr 483 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → ∅ ∈ 𝐽)
3 eleq1 2898 . . . . 5 (𝑆 = ∅ → (𝑆𝐽 ↔ ∅ ∈ 𝐽))
43adantl 484 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → (𝑆𝐽 ↔ ∅ ∈ 𝐽))
52, 4mpbird 259 . . 3 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → 𝑆𝐽)
6 rzal 4451 . . . 4 (𝑆 = ∅ → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
76adantl 484 . . 3 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
85, 72thd 267 . 2 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → (𝑆𝐽 ↔ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
9 opnneip 21719 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑥𝑆) → 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
1093expia 1115 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑥𝑆𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
1110ralrimiv 3179 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝐽) → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
1211ex 415 . . . 4 (𝐽 ∈ Top → (𝑆𝐽 → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
1312adantr 483 . . 3 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (𝑆𝐽 → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
14 df-ne 3015 . . . . . 6 (𝑆 ≠ ∅ ↔ ¬ 𝑆 = ∅)
15 r19.2z 4438 . . . . . . 7 ((𝑆 ≠ ∅ ∧ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})) → ∃𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
1615ex 415 . . . . . 6 (𝑆 ≠ ∅ → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → ∃𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
1714, 16sylbir 237 . . . . 5 𝑆 = ∅ → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → ∃𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
18 eqid 2819 . . . . . . . 8 𝐽 = 𝐽
1918neii1 21706 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑆 𝐽)
2019ex 415 . . . . . 6 (𝐽 ∈ Top → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 𝐽))
2120rexlimdvw 3288 . . . . 5 (𝐽 ∈ Top → (∃𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 𝐽))
2217, 21sylan9r 511 . . . 4 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 𝐽))
2318ntrss2 21657 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
2423adantr 483 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
25 vex 3496 . . . . . . . . . . . . 13 𝑥 ∈ V
2625snss 4710 . . . . . . . . . . . 12 (𝑥 ∈ ((int‘𝐽)‘𝑆) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆))
2726ralbii 3163 . . . . . . . . . . 11 (∀𝑥𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆) ↔ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆))
28 dfss3 3954 . . . . . . . . . . . . 13 (𝑆 ⊆ ((int‘𝐽)‘𝑆) ↔ ∀𝑥𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆))
2928biimpri 230 . . . . . . . . . . . 12 (∀𝑥𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆) → 𝑆 ⊆ ((int‘𝐽)‘𝑆))
3029adantl 484 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ ∀𝑥𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ⊆ ((int‘𝐽)‘𝑆))
3127, 30sylan2br 596 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)) → 𝑆 ⊆ ((int‘𝐽)‘𝑆))
3224, 31eqssd 3982 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)) → ((int‘𝐽)‘𝑆) = 𝑆)
3332ex 415 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆) → ((int‘𝐽)‘𝑆) = 𝑆))
3425snss 4710 . . . . . . . . . . . 12 (𝑥𝑆 ↔ {𝑥} ⊆ 𝑆)
35 sstr2 3972 . . . . . . . . . . . . . 14 ({𝑥} ⊆ 𝑆 → (𝑆 𝐽 → {𝑥} ⊆ 𝐽))
3635com12 32 . . . . . . . . . . . . 13 (𝑆 𝐽 → ({𝑥} ⊆ 𝑆 → {𝑥} ⊆ 𝐽))
3736adantl 484 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ({𝑥} ⊆ 𝑆 → {𝑥} ⊆ 𝐽))
3834, 37syl5bi 244 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑥𝑆 → {𝑥} ⊆ 𝐽))
3938imp 409 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ 𝑥𝑆) → {𝑥} ⊆ 𝐽)
4018neiint 21704 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ {𝑥} ⊆ 𝐽𝑆 𝐽) → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
41403com23 1120 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽 ∧ {𝑥} ⊆ 𝐽) → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
42413expa 1112 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ {𝑥} ⊆ 𝐽) → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
4339, 42syldan 593 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ 𝑥𝑆) → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
4443ralbidva 3194 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
4518isopn3 21666 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))
4633, 44, 453imtr4d 296 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆𝐽))
4746ex 415 . . . . . 6 (𝐽 ∈ Top → (𝑆 𝐽 → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆𝐽)))
4847com23 86 . . . . 5 (𝐽 ∈ Top → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑆 𝐽𝑆𝐽)))
4948adantr 483 . . . 4 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑆 𝐽𝑆𝐽)))
5022, 49mpdd 43 . . 3 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆𝐽))
5113, 50impbid 214 . 2 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (𝑆𝐽 ↔ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
528, 51pm2.61dan 811 1 (𝐽 ∈ Top → (𝑆𝐽 ↔ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107  wne 3014  wral 3136  wrex 3137  wss 3934  c0 4289  {csn 4559   cuni 4830  cfv 6348  Topctop 21493  intcnt 21617  neicnei 21697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-top 21494  df-ntr 21620  df-nei 21698
This theorem is referenced by:  neiptopreu  21733  flimcf  22582
  Copyright terms: Public domain W3C validator