MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnnei Structured version   Visualization version   GIF version

Theorem opnnei 22179
Description: A set is open iff it is a neighborhood of all of its points. (Contributed by Jeff Hankins, 15-Sep-2009.)
Assertion
Ref Expression
opnnei (𝐽 ∈ Top → (𝑆𝐽 ↔ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆

Proof of Theorem opnnei
StepHypRef Expression
1 0opn 21961 . . . . 5 (𝐽 ∈ Top → ∅ ∈ 𝐽)
21adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → ∅ ∈ 𝐽)
3 eleq1 2826 . . . . 5 (𝑆 = ∅ → (𝑆𝐽 ↔ ∅ ∈ 𝐽))
43adantl 481 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → (𝑆𝐽 ↔ ∅ ∈ 𝐽))
52, 4mpbird 256 . . 3 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → 𝑆𝐽)
6 rzal 4436 . . . 4 (𝑆 = ∅ → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
76adantl 481 . . 3 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
85, 72thd 264 . 2 ((𝐽 ∈ Top ∧ 𝑆 = ∅) → (𝑆𝐽 ↔ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
9 opnneip 22178 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑥𝑆) → 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
1093expia 1119 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑥𝑆𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
1110ralrimiv 3106 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝐽) → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
1211ex 412 . . . 4 (𝐽 ∈ Top → (𝑆𝐽 → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
1312adantr 480 . . 3 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (𝑆𝐽 → ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
14 df-ne 2943 . . . . . 6 (𝑆 ≠ ∅ ↔ ¬ 𝑆 = ∅)
15 r19.2z 4422 . . . . . . 7 ((𝑆 ≠ ∅ ∧ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})) → ∃𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))
1615ex 412 . . . . . 6 (𝑆 ≠ ∅ → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → ∃𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
1714, 16sylbir 234 . . . . 5 𝑆 = ∅ → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → ∃𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
18 eqid 2738 . . . . . . . 8 𝐽 = 𝐽
1918neii1 22165 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑆 𝐽)
2019ex 412 . . . . . 6 (𝐽 ∈ Top → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 𝐽))
2120rexlimdvw 3218 . . . . 5 (𝐽 ∈ Top → (∃𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 𝐽))
2217, 21sylan9r 508 . . . 4 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 𝐽))
2318ntrss2 22116 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
2423adantr 480 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)) → ((int‘𝐽)‘𝑆) ⊆ 𝑆)
25 vex 3426 . . . . . . . . . . . . 13 𝑥 ∈ V
2625snss 4716 . . . . . . . . . . . 12 (𝑥 ∈ ((int‘𝐽)‘𝑆) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆))
2726ralbii 3090 . . . . . . . . . . 11 (∀𝑥𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆) ↔ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆))
28 dfss3 3905 . . . . . . . . . . . . 13 (𝑆 ⊆ ((int‘𝐽)‘𝑆) ↔ ∀𝑥𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆))
2928biimpri 227 . . . . . . . . . . . 12 (∀𝑥𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆) → 𝑆 ⊆ ((int‘𝐽)‘𝑆))
3029adantl 481 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ ∀𝑥𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ⊆ ((int‘𝐽)‘𝑆))
3127, 30sylan2br 594 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)) → 𝑆 ⊆ ((int‘𝐽)‘𝑆))
3224, 31eqssd 3934 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)) → ((int‘𝐽)‘𝑆) = 𝑆)
3332ex 412 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆) → ((int‘𝐽)‘𝑆) = 𝑆))
3425snss 4716 . . . . . . . . . . . 12 (𝑥𝑆 ↔ {𝑥} ⊆ 𝑆)
35 sstr2 3924 . . . . . . . . . . . . . 14 ({𝑥} ⊆ 𝑆 → (𝑆 𝐽 → {𝑥} ⊆ 𝐽))
3635com12 32 . . . . . . . . . . . . 13 (𝑆 𝐽 → ({𝑥} ⊆ 𝑆 → {𝑥} ⊆ 𝐽))
3736adantl 481 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ({𝑥} ⊆ 𝑆 → {𝑥} ⊆ 𝐽))
3834, 37syl5bi 241 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑥𝑆 → {𝑥} ⊆ 𝐽))
3938imp 406 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ 𝑥𝑆) → {𝑥} ⊆ 𝐽)
4018neiint 22163 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ {𝑥} ⊆ 𝐽𝑆 𝐽) → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
41403com23 1124 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 𝐽 ∧ {𝑥} ⊆ 𝐽) → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
42413expa 1116 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ {𝑥} ⊆ 𝐽) → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
4339, 42syldan 590 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ 𝑥𝑆) → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
4443ralbidva 3119 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ ∀𝑥𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)))
4518isopn3 22125 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑆𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆))
4633, 44, 453imtr4d 293 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆𝐽))
4746ex 412 . . . . . 6 (𝐽 ∈ Top → (𝑆 𝐽 → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆𝐽)))
4847com23 86 . . . . 5 (𝐽 ∈ Top → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑆 𝐽𝑆𝐽)))
4948adantr 480 . . . 4 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑆 𝐽𝑆𝐽)))
5022, 49mpdd 43 . . 3 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆𝐽))
5113, 50impbid 211 . 2 ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (𝑆𝐽 ↔ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
528, 51pm2.61dan 809 1 (𝐽 ∈ Top → (𝑆𝐽 ↔ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253  {csn 4558   cuni 4836  cfv 6418  Topctop 21950  intcnt 22076  neicnei 22156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-ntr 22079  df-nei 22157
This theorem is referenced by:  neiptopreu  22192  flimcf  23041
  Copyright terms: Public domain W3C validator