Proof of Theorem opnnei
Step | Hyp | Ref
| Expression |
1 | | 0opn 21961 |
. . . . 5
⊢ (𝐽 ∈ Top → ∅
∈ 𝐽) |
2 | 1 | adantr 480 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 = ∅) → ∅
∈ 𝐽) |
3 | | eleq1 2826 |
. . . . 5
⊢ (𝑆 = ∅ → (𝑆 ∈ 𝐽 ↔ ∅ ∈ 𝐽)) |
4 | 3 | adantl 481 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 = ∅) → (𝑆 ∈ 𝐽 ↔ ∅ ∈ 𝐽)) |
5 | 2, 4 | mpbird 256 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 = ∅) → 𝑆 ∈ 𝐽) |
6 | | rzal 4436 |
. . . 4
⊢ (𝑆 = ∅ → ∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})) |
7 | 6 | adantl 481 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 = ∅) → ∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})) |
8 | 5, 7 | 2thd 264 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 = ∅) → (𝑆 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))) |
9 | | opnneip 22178 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑥 ∈ 𝑆) → 𝑆 ∈ ((nei‘𝐽)‘{𝑥})) |
10 | 9 | 3expia 1119 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑥 ∈ 𝑆 → 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))) |
11 | 10 | ralrimiv 3106 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})) |
12 | 11 | ex 412 |
. . . 4
⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝐽 → ∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))) |
13 | 12 | adantr 480 |
. . 3
⊢ ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (𝑆 ∈ 𝐽 → ∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))) |
14 | | df-ne 2943 |
. . . . . 6
⊢ (𝑆 ≠ ∅ ↔ ¬ 𝑆 = ∅) |
15 | | r19.2z 4422 |
. . . . . . 7
⊢ ((𝑆 ≠ ∅ ∧
∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})) → ∃𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})) |
16 | 15 | ex 412 |
. . . . . 6
⊢ (𝑆 ≠ ∅ →
(∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → ∃𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))) |
17 | 14, 16 | sylbir 234 |
. . . . 5
⊢ (¬
𝑆 = ∅ →
(∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → ∃𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))) |
18 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
19 | 18 | neii1 22165 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑆 ⊆ ∪ 𝐽) |
20 | 19 | ex 412 |
. . . . . 6
⊢ (𝐽 ∈ Top → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 ⊆ ∪ 𝐽)) |
21 | 20 | rexlimdvw 3218 |
. . . . 5
⊢ (𝐽 ∈ Top → (∃𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 ⊆ ∪ 𝐽)) |
22 | 17, 21 | sylan9r 508 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) →
(∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 ⊆ ∪ 𝐽)) |
23 | 18 | ntrss2 22116 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
24 | 23 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
∧ ∀𝑥 ∈
𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
25 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
26 | 25 | snss 4716 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((int‘𝐽)‘𝑆) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆)) |
27 | 26 | ralbii 3090 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ 𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)) |
28 | | dfss3 3905 |
. . . . . . . . . . . . 13
⊢ (𝑆 ⊆ ((int‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ 𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆)) |
29 | 28 | biimpri 227 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆) → 𝑆 ⊆ ((int‘𝐽)‘𝑆)) |
30 | 29 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
∧ ∀𝑥 ∈
𝑆 𝑥 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ⊆ ((int‘𝐽)‘𝑆)) |
31 | 27, 30 | sylan2br 594 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
∧ ∀𝑥 ∈
𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)) → 𝑆 ⊆ ((int‘𝐽)‘𝑆)) |
32 | 24, 31 | eqssd 3934 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
∧ ∀𝑥 ∈
𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆)) → ((int‘𝐽)‘𝑆) = 𝑆) |
33 | 32 | ex 412 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ (∀𝑥 ∈
𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆) → ((int‘𝐽)‘𝑆) = 𝑆)) |
34 | 25 | snss 4716 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑆 ↔ {𝑥} ⊆ 𝑆) |
35 | | sstr2 3924 |
. . . . . . . . . . . . . 14
⊢ ({𝑥} ⊆ 𝑆 → (𝑆 ⊆ ∪ 𝐽 → {𝑥} ⊆ ∪ 𝐽)) |
36 | 35 | com12 32 |
. . . . . . . . . . . . 13
⊢ (𝑆 ⊆ ∪ 𝐽
→ ({𝑥} ⊆ 𝑆 → {𝑥} ⊆ ∪ 𝐽)) |
37 | 36 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ({𝑥} ⊆ 𝑆 → {𝑥} ⊆ ∪ 𝐽)) |
38 | 34, 37 | syl5bi 241 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ (𝑥 ∈ 𝑆 → {𝑥} ⊆ ∪ 𝐽)) |
39 | 38 | imp 406 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
∧ 𝑥 ∈ 𝑆) → {𝑥} ⊆ ∪ 𝐽) |
40 | 18 | neiint 22163 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ {𝑥} ⊆ ∪ 𝐽
∧ 𝑆 ⊆ ∪ 𝐽)
→ (𝑆 ∈
((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆))) |
41 | 40 | 3com23 1124 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽
∧ {𝑥} ⊆ ∪ 𝐽)
→ (𝑆 ∈
((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆))) |
42 | 41 | 3expa 1116 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
∧ {𝑥} ⊆ ∪ 𝐽)
→ (𝑆 ∈
((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆))) |
43 | 39, 42 | syldan 590 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
∧ 𝑥 ∈ 𝑆) → (𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ {𝑥} ⊆ ((int‘𝐽)‘𝑆))) |
44 | 43 | ralbidva 3119 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ (∀𝑥 ∈
𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) ↔ ∀𝑥 ∈ 𝑆 {𝑥} ⊆ ((int‘𝐽)‘𝑆))) |
45 | 18 | isopn3 22125 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
46 | 33, 44, 45 | 3imtr4d 293 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ (∀𝑥 ∈
𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 ∈ 𝐽)) |
47 | 46 | ex 412 |
. . . . . 6
⊢ (𝐽 ∈ Top → (𝑆 ⊆ ∪ 𝐽
→ (∀𝑥 ∈
𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 ∈ 𝐽))) |
48 | 47 | com23 86 |
. . . . 5
⊢ (𝐽 ∈ Top →
(∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑆 ⊆ ∪ 𝐽 → 𝑆 ∈ 𝐽))) |
49 | 48 | adantr 480 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) →
(∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑆 ⊆ ∪ 𝐽 → 𝑆 ∈ 𝐽))) |
50 | 22, 49 | mpdd 43 |
. . 3
⊢ ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) →
(∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}) → 𝑆 ∈ 𝐽)) |
51 | 13, 50 | impbid 211 |
. 2
⊢ ((𝐽 ∈ Top ∧ ¬ 𝑆 = ∅) → (𝑆 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))) |
52 | 8, 51 | pm2.61dan 809 |
1
⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))) |