MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topcld Structured version   Visualization version   GIF version

Theorem topcld 22955
Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
topcld (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))

Proof of Theorem topcld
StepHypRef Expression
1 difid 4335 . . . 4 (𝑋𝑋) = ∅
2 0opn 22824 . . . 4 (𝐽 ∈ Top → ∅ ∈ 𝐽)
31, 2eqeltrid 2832 . . 3 (𝐽 ∈ Top → (𝑋𝑋) ∈ 𝐽)
4 ssid 3966 . . 3 𝑋𝑋
53, 4jctil 519 . 2 (𝐽 ∈ Top → (𝑋𝑋 ∧ (𝑋𝑋) ∈ 𝐽))
6 iscld.1 . . 3 𝑋 = 𝐽
76iscld 22947 . 2 (𝐽 ∈ Top → (𝑋 ∈ (Clsd‘𝐽) ↔ (𝑋𝑋 ∧ (𝑋𝑋) ∈ 𝐽)))
85, 7mpbird 257 1 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3908  wss 3911  c0 4292   cuni 4867  cfv 6499  Topctop 22813  Clsdccld 22936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-top 22814  df-cld 22939
This theorem is referenced by:  clsval  22957  riincld  22964  clscld  22967  clstop  22989  cldmre  22998  indiscld  23011  isconn2  23334  cnmpopc  24855  rlmbn  25294  ubthlem1  30849  unicls  33886  cmpfiiin  42678  kelac1  43045
  Copyright terms: Public domain W3C validator