MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topcld Structured version   Visualization version   GIF version

Theorem topcld 22973
Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
topcld (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))

Proof of Theorem topcld
StepHypRef Expression
1 difid 4351 . . . 4 (𝑋𝑋) = ∅
2 0opn 22842 . . . 4 (𝐽 ∈ Top → ∅ ∈ 𝐽)
31, 2eqeltrid 2838 . . 3 (𝐽 ∈ Top → (𝑋𝑋) ∈ 𝐽)
4 ssid 3981 . . 3 𝑋𝑋
53, 4jctil 519 . 2 (𝐽 ∈ Top → (𝑋𝑋 ∧ (𝑋𝑋) ∈ 𝐽))
6 iscld.1 . . 3 𝑋 = 𝐽
76iscld 22965 . 2 (𝐽 ∈ Top → (𝑋 ∈ (Clsd‘𝐽) ↔ (𝑋𝑋 ∧ (𝑋𝑋) ∈ 𝐽)))
85, 7mpbird 257 1 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cdif 3923  wss 3926  c0 4308   cuni 4883  cfv 6531  Topctop 22831  Clsdccld 22954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-top 22832  df-cld 22957
This theorem is referenced by:  clsval  22975  riincld  22982  clscld  22985  clstop  23007  cldmre  23016  indiscld  23029  isconn2  23352  cnmpopc  24873  rlmbn  25313  ubthlem1  30851  unicls  33934  cmpfiiin  42720  kelac1  43087
  Copyright terms: Public domain W3C validator