| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topcld | Structured version Visualization version GIF version | ||
| Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| topcld | ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difid 4351 | . . . 4 ⊢ (𝑋 ∖ 𝑋) = ∅ | |
| 2 | 0opn 22842 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
| 3 | 1, 2 | eqeltrid 2838 | . . 3 ⊢ (𝐽 ∈ Top → (𝑋 ∖ 𝑋) ∈ 𝐽) |
| 4 | ssid 3981 | . . 3 ⊢ 𝑋 ⊆ 𝑋 | |
| 5 | 3, 4 | jctil 519 | . 2 ⊢ (𝐽 ∈ Top → (𝑋 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑋) ∈ 𝐽)) |
| 6 | iscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 7 | 6 | iscld 22965 | . 2 ⊢ (𝐽 ∈ Top → (𝑋 ∈ (Clsd‘𝐽) ↔ (𝑋 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑋) ∈ 𝐽))) |
| 8 | 5, 7 | mpbird 257 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 ∪ cuni 4883 ‘cfv 6531 Topctop 22831 Clsdccld 22954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-top 22832 df-cld 22957 |
| This theorem is referenced by: clsval 22975 riincld 22982 clscld 22985 clstop 23007 cldmre 23016 indiscld 23029 isconn2 23352 cnmpopc 24873 rlmbn 25313 ubthlem1 30851 unicls 33934 cmpfiiin 42720 kelac1 43087 |
| Copyright terms: Public domain | W3C validator |