![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topcld | Structured version Visualization version GIF version |
Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
topcld | ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difid 4370 | . . . 4 ⊢ (𝑋 ∖ 𝑋) = ∅ | |
2 | 0opn 22727 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
3 | 1, 2 | eqeltrid 2836 | . . 3 ⊢ (𝐽 ∈ Top → (𝑋 ∖ 𝑋) ∈ 𝐽) |
4 | ssid 4004 | . . 3 ⊢ 𝑋 ⊆ 𝑋 | |
5 | 3, 4 | jctil 519 | . 2 ⊢ (𝐽 ∈ Top → (𝑋 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑋) ∈ 𝐽)) |
6 | iscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
7 | 6 | iscld 22852 | . 2 ⊢ (𝐽 ∈ Top → (𝑋 ∈ (Clsd‘𝐽) ↔ (𝑋 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑋) ∈ 𝐽))) |
8 | 5, 7 | mpbird 257 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∖ cdif 3945 ⊆ wss 3948 ∅c0 4322 ∪ cuni 4908 ‘cfv 6543 Topctop 22716 Clsdccld 22841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-top 22717 df-cld 22844 |
This theorem is referenced by: clsval 22862 riincld 22869 clscld 22872 clstop 22894 cldmre 22903 indiscld 22916 isconn2 23239 cnmpopc 24770 rlmbn 25210 ubthlem1 30558 unicls 33349 cmpfiiin 41901 kelac1 42271 |
Copyright terms: Public domain | W3C validator |