Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem3 Structured version   Visualization version   GIF version

Theorem sxbrsigalem3 34274
Description: The sigma-algebra generated by the closed half-spaces of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed sets of (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.)
Hypothesis
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
sxbrsigalem3 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
Distinct variable group:   𝑒,𝑓
Allowed substitution hints:   𝐽(𝑒,𝑓)

Proof of Theorem sxbrsigalem3
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sxbrsigalem0 34273 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
2 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
3 retop 24782 . . . . . 6 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2837 . . . . 5 𝐽 ∈ Top
54, 4txtopi 23598 . . . 4 (𝐽 ×t 𝐽) ∈ Top
6 uniretop 24783 . . . . . 6 ℝ = (topGen‘ran (,))
72unieqi 4919 . . . . . 6 𝐽 = (topGen‘ran (,))
86, 7eqtr4i 2768 . . . . 5 ℝ = 𝐽
94, 4, 8, 8txunii 23601 . . . 4 (ℝ × ℝ) = (𝐽 ×t 𝐽)
105, 9unicls 33902 . . 3 (Clsd‘(𝐽 ×t 𝐽)) = (ℝ × ℝ)
111, 10eqtr4i 2768 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (Clsd‘(𝐽 ×t 𝐽))
12 ovex 7464 . . . . . . 7 (𝑒[,)+∞) ∈ V
13 reex 11246 . . . . . . 7 ℝ ∈ V
1412, 13xpex 7773 . . . . . 6 ((𝑒[,)+∞) × ℝ) ∈ V
15 eqid 2737 . . . . . 6 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
1614, 15fnmpti 6711 . . . . 5 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) Fn ℝ
17 oveq1 7438 . . . . . . . . 9 (𝑒 = 𝑢 → (𝑒[,)+∞) = (𝑢[,)+∞))
1817xpeq1d 5714 . . . . . . . 8 (𝑒 = 𝑢 → ((𝑒[,)+∞) × ℝ) = ((𝑢[,)+∞) × ℝ))
19 ovex 7464 . . . . . . . . 9 (𝑢[,)+∞) ∈ V
2019, 13xpex 7773 . . . . . . . 8 ((𝑢[,)+∞) × ℝ) ∈ V
2118, 15, 20fvmpt 7016 . . . . . . 7 (𝑢 ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) = ((𝑢[,)+∞) × ℝ))
22 icopnfcld 24788 . . . . . . . . 9 (𝑢 ∈ ℝ → (𝑢[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
232fveq2i 6909 . . . . . . . . 9 (Clsd‘𝐽) = (Clsd‘(topGen‘ran (,)))
2422, 23eleqtrrdi 2852 . . . . . . . 8 (𝑢 ∈ ℝ → (𝑢[,)+∞) ∈ (Clsd‘𝐽))
25 dif0 4378 . . . . . . . . 9 (ℝ ∖ ∅) = ℝ
26 0opn 22910 . . . . . . . . . . 11 (𝐽 ∈ Top → ∅ ∈ 𝐽)
274, 26ax-mp 5 . . . . . . . . . 10 ∅ ∈ 𝐽
288opncld 23041 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ∅ ∈ 𝐽) → (ℝ ∖ ∅) ∈ (Clsd‘𝐽))
294, 27, 28mp2an 692 . . . . . . . . 9 (ℝ ∖ ∅) ∈ (Clsd‘𝐽)
3025, 29eqeltrri 2838 . . . . . . . 8 ℝ ∈ (Clsd‘𝐽)
31 txcld 23611 . . . . . . . 8 (((𝑢[,)+∞) ∈ (Clsd‘𝐽) ∧ ℝ ∈ (Clsd‘𝐽)) → ((𝑢[,)+∞) × ℝ) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3224, 30, 31sylancl 586 . . . . . . 7 (𝑢 ∈ ℝ → ((𝑢[,)+∞) × ℝ) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3321, 32eqeltrd 2841 . . . . . 6 (𝑢 ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3433rgen 3063 . . . . 5 𝑢 ∈ ℝ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽))
35 fnfvrnss 7141 . . . . 5 (((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) Fn ℝ ∧ ∀𝑢 ∈ ℝ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽))) → ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (Clsd‘(𝐽 ×t 𝐽)))
3616, 34, 35mp2an 692 . . . 4 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (Clsd‘(𝐽 ×t 𝐽))
37 ovex 7464 . . . . . . 7 (𝑓[,)+∞) ∈ V
3813, 37xpex 7773 . . . . . 6 (ℝ × (𝑓[,)+∞)) ∈ V
39 eqid 2737 . . . . . 6 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
4038, 39fnmpti 6711 . . . . 5 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) Fn ℝ
41 oveq1 7438 . . . . . . . . 9 (𝑓 = 𝑣 → (𝑓[,)+∞) = (𝑣[,)+∞))
4241xpeq2d 5715 . . . . . . . 8 (𝑓 = 𝑣 → (ℝ × (𝑓[,)+∞)) = (ℝ × (𝑣[,)+∞)))
43 ovex 7464 . . . . . . . . 9 (𝑣[,)+∞) ∈ V
4413, 43xpex 7773 . . . . . . . 8 (ℝ × (𝑣[,)+∞)) ∈ V
4542, 39, 44fvmpt 7016 . . . . . . 7 (𝑣 ∈ ℝ → ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) = (ℝ × (𝑣[,)+∞)))
46 icopnfcld 24788 . . . . . . . . 9 (𝑣 ∈ ℝ → (𝑣[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
4746, 23eleqtrrdi 2852 . . . . . . . 8 (𝑣 ∈ ℝ → (𝑣[,)+∞) ∈ (Clsd‘𝐽))
48 txcld 23611 . . . . . . . 8 ((ℝ ∈ (Clsd‘𝐽) ∧ (𝑣[,)+∞) ∈ (Clsd‘𝐽)) → (ℝ × (𝑣[,)+∞)) ∈ (Clsd‘(𝐽 ×t 𝐽)))
4930, 47, 48sylancr 587 . . . . . . 7 (𝑣 ∈ ℝ → (ℝ × (𝑣[,)+∞)) ∈ (Clsd‘(𝐽 ×t 𝐽)))
5045, 49eqeltrd 2841 . . . . . 6 (𝑣 ∈ ℝ → ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽)))
5150rgen 3063 . . . . 5 𝑣 ∈ ℝ ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽))
52 fnfvrnss 7141 . . . . 5 (((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) Fn ℝ ∧ ∀𝑣 ∈ ℝ ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽))) → ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (Clsd‘(𝐽 ×t 𝐽)))
5340, 51, 52mp2an 692 . . . 4 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (Clsd‘(𝐽 ×t 𝐽))
5436, 53unssi 4191 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (Clsd‘(𝐽 ×t 𝐽))
55 fvex 6919 . . . 4 (Clsd‘(𝐽 ×t 𝐽)) ∈ V
56 sssigagen 34146 . . . 4 ((Clsd‘(𝐽 ×t 𝐽)) ∈ V → (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))))
5755, 56ax-mp 5 . . 3 (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
5854, 57sstri 3993 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
59 sigagenss2 34151 . 2 (( (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (Clsd‘(𝐽 ×t 𝐽)) ∧ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) ∧ (Clsd‘(𝐽 ×t 𝐽)) ∈ V) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))))
6011, 58, 55, 59mp3an 1463 1 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cdif 3948  cun 3949  wss 3951  c0 4333   cuni 4907  cmpt 5225   × cxp 5683  ran crn 5686   Fn wfn 6556  cfv 6561  (class class class)co 7431  cr 11154  +∞cpnf 11292  (,)cioo 13387  [,)cico 13389  topGenctg 17482  Topctop 22899  Clsdccld 23024   ×t ctx 23568  sigaGencsigagen 34139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-ioo 13391  df-ico 13393  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027  df-tx 23570  df-siga 34110  df-sigagen 34140
This theorem is referenced by:  sxbrsigalem4  34289
  Copyright terms: Public domain W3C validator