Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem3 Structured version   Visualization version   GIF version

Theorem sxbrsigalem3 32139
Description: The sigma-algebra generated by the closed half-spaces of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed sets of (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.)
Hypothesis
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
sxbrsigalem3 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
Distinct variable group:   𝑒,𝑓
Allowed substitution hints:   𝐽(𝑒,𝑓)

Proof of Theorem sxbrsigalem3
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sxbrsigalem0 32138 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
2 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
3 retop 23831 . . . . . 6 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2835 . . . . 5 𝐽 ∈ Top
54, 4txtopi 22649 . . . 4 (𝐽 ×t 𝐽) ∈ Top
6 uniretop 23832 . . . . . 6 ℝ = (topGen‘ran (,))
72unieqi 4849 . . . . . 6 𝐽 = (topGen‘ran (,))
86, 7eqtr4i 2769 . . . . 5 ℝ = 𝐽
94, 4, 8, 8txunii 22652 . . . 4 (ℝ × ℝ) = (𝐽 ×t 𝐽)
105, 9unicls 31755 . . 3 (Clsd‘(𝐽 ×t 𝐽)) = (ℝ × ℝ)
111, 10eqtr4i 2769 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (Clsd‘(𝐽 ×t 𝐽))
12 ovex 7288 . . . . . . 7 (𝑒[,)+∞) ∈ V
13 reex 10893 . . . . . . 7 ℝ ∈ V
1412, 13xpex 7581 . . . . . 6 ((𝑒[,)+∞) × ℝ) ∈ V
15 eqid 2738 . . . . . 6 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
1614, 15fnmpti 6560 . . . . 5 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) Fn ℝ
17 oveq1 7262 . . . . . . . . 9 (𝑒 = 𝑢 → (𝑒[,)+∞) = (𝑢[,)+∞))
1817xpeq1d 5609 . . . . . . . 8 (𝑒 = 𝑢 → ((𝑒[,)+∞) × ℝ) = ((𝑢[,)+∞) × ℝ))
19 ovex 7288 . . . . . . . . 9 (𝑢[,)+∞) ∈ V
2019, 13xpex 7581 . . . . . . . 8 ((𝑢[,)+∞) × ℝ) ∈ V
2118, 15, 20fvmpt 6857 . . . . . . 7 (𝑢 ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) = ((𝑢[,)+∞) × ℝ))
22 icopnfcld 23837 . . . . . . . . 9 (𝑢 ∈ ℝ → (𝑢[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
232fveq2i 6759 . . . . . . . . 9 (Clsd‘𝐽) = (Clsd‘(topGen‘ran (,)))
2422, 23eleqtrrdi 2850 . . . . . . . 8 (𝑢 ∈ ℝ → (𝑢[,)+∞) ∈ (Clsd‘𝐽))
25 dif0 4303 . . . . . . . . 9 (ℝ ∖ ∅) = ℝ
26 0opn 21961 . . . . . . . . . . 11 (𝐽 ∈ Top → ∅ ∈ 𝐽)
274, 26ax-mp 5 . . . . . . . . . 10 ∅ ∈ 𝐽
288opncld 22092 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ∅ ∈ 𝐽) → (ℝ ∖ ∅) ∈ (Clsd‘𝐽))
294, 27, 28mp2an 688 . . . . . . . . 9 (ℝ ∖ ∅) ∈ (Clsd‘𝐽)
3025, 29eqeltrri 2836 . . . . . . . 8 ℝ ∈ (Clsd‘𝐽)
31 txcld 22662 . . . . . . . 8 (((𝑢[,)+∞) ∈ (Clsd‘𝐽) ∧ ℝ ∈ (Clsd‘𝐽)) → ((𝑢[,)+∞) × ℝ) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3224, 30, 31sylancl 585 . . . . . . 7 (𝑢 ∈ ℝ → ((𝑢[,)+∞) × ℝ) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3321, 32eqeltrd 2839 . . . . . 6 (𝑢 ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3433rgen 3073 . . . . 5 𝑢 ∈ ℝ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽))
35 fnfvrnss 6976 . . . . 5 (((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) Fn ℝ ∧ ∀𝑢 ∈ ℝ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽))) → ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (Clsd‘(𝐽 ×t 𝐽)))
3616, 34, 35mp2an 688 . . . 4 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (Clsd‘(𝐽 ×t 𝐽))
37 ovex 7288 . . . . . . 7 (𝑓[,)+∞) ∈ V
3813, 37xpex 7581 . . . . . 6 (ℝ × (𝑓[,)+∞)) ∈ V
39 eqid 2738 . . . . . 6 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
4038, 39fnmpti 6560 . . . . 5 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) Fn ℝ
41 oveq1 7262 . . . . . . . . 9 (𝑓 = 𝑣 → (𝑓[,)+∞) = (𝑣[,)+∞))
4241xpeq2d 5610 . . . . . . . 8 (𝑓 = 𝑣 → (ℝ × (𝑓[,)+∞)) = (ℝ × (𝑣[,)+∞)))
43 ovex 7288 . . . . . . . . 9 (𝑣[,)+∞) ∈ V
4413, 43xpex 7581 . . . . . . . 8 (ℝ × (𝑣[,)+∞)) ∈ V
4542, 39, 44fvmpt 6857 . . . . . . 7 (𝑣 ∈ ℝ → ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) = (ℝ × (𝑣[,)+∞)))
46 icopnfcld 23837 . . . . . . . . 9 (𝑣 ∈ ℝ → (𝑣[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
4746, 23eleqtrrdi 2850 . . . . . . . 8 (𝑣 ∈ ℝ → (𝑣[,)+∞) ∈ (Clsd‘𝐽))
48 txcld 22662 . . . . . . . 8 ((ℝ ∈ (Clsd‘𝐽) ∧ (𝑣[,)+∞) ∈ (Clsd‘𝐽)) → (ℝ × (𝑣[,)+∞)) ∈ (Clsd‘(𝐽 ×t 𝐽)))
4930, 47, 48sylancr 586 . . . . . . 7 (𝑣 ∈ ℝ → (ℝ × (𝑣[,)+∞)) ∈ (Clsd‘(𝐽 ×t 𝐽)))
5045, 49eqeltrd 2839 . . . . . 6 (𝑣 ∈ ℝ → ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽)))
5150rgen 3073 . . . . 5 𝑣 ∈ ℝ ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽))
52 fnfvrnss 6976 . . . . 5 (((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) Fn ℝ ∧ ∀𝑣 ∈ ℝ ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽))) → ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (Clsd‘(𝐽 ×t 𝐽)))
5340, 51, 52mp2an 688 . . . 4 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (Clsd‘(𝐽 ×t 𝐽))
5436, 53unssi 4115 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (Clsd‘(𝐽 ×t 𝐽))
55 fvex 6769 . . . 4 (Clsd‘(𝐽 ×t 𝐽)) ∈ V
56 sssigagen 32013 . . . 4 ((Clsd‘(𝐽 ×t 𝐽)) ∈ V → (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))))
5755, 56ax-mp 5 . . 3 (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
5854, 57sstri 3926 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
59 sigagenss2 32018 . 2 (( (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (Clsd‘(𝐽 ×t 𝐽)) ∧ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) ∧ (Clsd‘(𝐽 ×t 𝐽)) ∈ V) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))))
6011, 58, 55, 59mp3an 1459 1 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  cun 3881  wss 3883  c0 4253   cuni 4836  cmpt 5153   × cxp 5578  ran crn 5581   Fn wfn 6413  cfv 6418  (class class class)co 7255  cr 10801  +∞cpnf 10937  (,)cioo 13008  [,)cico 13010  topGenctg 17065  Topctop 21950  Clsdccld 22075   ×t ctx 22619  sigaGencsigagen 32006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-ioo 13012  df-ico 13014  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-tx 22621  df-siga 31977  df-sigagen 32007
This theorem is referenced by:  sxbrsigalem4  32154
  Copyright terms: Public domain W3C validator