Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem3 Structured version   Visualization version   GIF version

Theorem sxbrsigalem3 34253
Description: The sigma-algebra generated by the closed half-spaces of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed sets of (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.)
Hypothesis
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
sxbrsigalem3 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
Distinct variable group:   𝑒,𝑓
Allowed substitution hints:   𝐽(𝑒,𝑓)

Proof of Theorem sxbrsigalem3
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sxbrsigalem0 34252 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
2 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
3 retop 24797 . . . . . 6 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2834 . . . . 5 𝐽 ∈ Top
54, 4txtopi 23613 . . . 4 (𝐽 ×t 𝐽) ∈ Top
6 uniretop 24798 . . . . . 6 ℝ = (topGen‘ran (,))
72unieqi 4923 . . . . . 6 𝐽 = (topGen‘ran (,))
86, 7eqtr4i 2765 . . . . 5 ℝ = 𝐽
94, 4, 8, 8txunii 23616 . . . 4 (ℝ × ℝ) = (𝐽 ×t 𝐽)
105, 9unicls 33863 . . 3 (Clsd‘(𝐽 ×t 𝐽)) = (ℝ × ℝ)
111, 10eqtr4i 2765 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (Clsd‘(𝐽 ×t 𝐽))
12 ovex 7463 . . . . . . 7 (𝑒[,)+∞) ∈ V
13 reex 11243 . . . . . . 7 ℝ ∈ V
1412, 13xpex 7771 . . . . . 6 ((𝑒[,)+∞) × ℝ) ∈ V
15 eqid 2734 . . . . . 6 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) = (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
1614, 15fnmpti 6711 . . . . 5 (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) Fn ℝ
17 oveq1 7437 . . . . . . . . 9 (𝑒 = 𝑢 → (𝑒[,)+∞) = (𝑢[,)+∞))
1817xpeq1d 5717 . . . . . . . 8 (𝑒 = 𝑢 → ((𝑒[,)+∞) × ℝ) = ((𝑢[,)+∞) × ℝ))
19 ovex 7463 . . . . . . . . 9 (𝑢[,)+∞) ∈ V
2019, 13xpex 7771 . . . . . . . 8 ((𝑢[,)+∞) × ℝ) ∈ V
2118, 15, 20fvmpt 7015 . . . . . . 7 (𝑢 ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) = ((𝑢[,)+∞) × ℝ))
22 icopnfcld 24803 . . . . . . . . 9 (𝑢 ∈ ℝ → (𝑢[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
232fveq2i 6909 . . . . . . . . 9 (Clsd‘𝐽) = (Clsd‘(topGen‘ran (,)))
2422, 23eleqtrrdi 2849 . . . . . . . 8 (𝑢 ∈ ℝ → (𝑢[,)+∞) ∈ (Clsd‘𝐽))
25 dif0 4383 . . . . . . . . 9 (ℝ ∖ ∅) = ℝ
26 0opn 22925 . . . . . . . . . . 11 (𝐽 ∈ Top → ∅ ∈ 𝐽)
274, 26ax-mp 5 . . . . . . . . . 10 ∅ ∈ 𝐽
288opncld 23056 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ∅ ∈ 𝐽) → (ℝ ∖ ∅) ∈ (Clsd‘𝐽))
294, 27, 28mp2an 692 . . . . . . . . 9 (ℝ ∖ ∅) ∈ (Clsd‘𝐽)
3025, 29eqeltrri 2835 . . . . . . . 8 ℝ ∈ (Clsd‘𝐽)
31 txcld 23626 . . . . . . . 8 (((𝑢[,)+∞) ∈ (Clsd‘𝐽) ∧ ℝ ∈ (Clsd‘𝐽)) → ((𝑢[,)+∞) × ℝ) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3224, 30, 31sylancl 586 . . . . . . 7 (𝑢 ∈ ℝ → ((𝑢[,)+∞) × ℝ) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3321, 32eqeltrd 2838 . . . . . 6 (𝑢 ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽)))
3433rgen 3060 . . . . 5 𝑢 ∈ ℝ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽))
35 fnfvrnss 7140 . . . . 5 (((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) Fn ℝ ∧ ∀𝑢 ∈ ℝ ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽))) → ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (Clsd‘(𝐽 ×t 𝐽)))
3616, 34, 35mp2an 692 . . . 4 ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ⊆ (Clsd‘(𝐽 ×t 𝐽))
37 ovex 7463 . . . . . . 7 (𝑓[,)+∞) ∈ V
3813, 37xpex 7771 . . . . . 6 (ℝ × (𝑓[,)+∞)) ∈ V
39 eqid 2734 . . . . . 6 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) = (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))
4038, 39fnmpti 6711 . . . . 5 (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) Fn ℝ
41 oveq1 7437 . . . . . . . . 9 (𝑓 = 𝑣 → (𝑓[,)+∞) = (𝑣[,)+∞))
4241xpeq2d 5718 . . . . . . . 8 (𝑓 = 𝑣 → (ℝ × (𝑓[,)+∞)) = (ℝ × (𝑣[,)+∞)))
43 ovex 7463 . . . . . . . . 9 (𝑣[,)+∞) ∈ V
4413, 43xpex 7771 . . . . . . . 8 (ℝ × (𝑣[,)+∞)) ∈ V
4542, 39, 44fvmpt 7015 . . . . . . 7 (𝑣 ∈ ℝ → ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) = (ℝ × (𝑣[,)+∞)))
46 icopnfcld 24803 . . . . . . . . 9 (𝑣 ∈ ℝ → (𝑣[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
4746, 23eleqtrrdi 2849 . . . . . . . 8 (𝑣 ∈ ℝ → (𝑣[,)+∞) ∈ (Clsd‘𝐽))
48 txcld 23626 . . . . . . . 8 ((ℝ ∈ (Clsd‘𝐽) ∧ (𝑣[,)+∞) ∈ (Clsd‘𝐽)) → (ℝ × (𝑣[,)+∞)) ∈ (Clsd‘(𝐽 ×t 𝐽)))
4930, 47, 48sylancr 587 . . . . . . 7 (𝑣 ∈ ℝ → (ℝ × (𝑣[,)+∞)) ∈ (Clsd‘(𝐽 ×t 𝐽)))
5045, 49eqeltrd 2838 . . . . . 6 (𝑣 ∈ ℝ → ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽)))
5150rgen 3060 . . . . 5 𝑣 ∈ ℝ ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽))
52 fnfvrnss 7140 . . . . 5 (((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) Fn ℝ ∧ ∀𝑣 ∈ ℝ ((𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽))) → ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (Clsd‘(𝐽 ×t 𝐽)))
5340, 51, 52mp2an 692 . . . 4 ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))) ⊆ (Clsd‘(𝐽 ×t 𝐽))
5436, 53unssi 4200 . . 3 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (Clsd‘(𝐽 ×t 𝐽))
55 fvex 6919 . . . 4 (Clsd‘(𝐽 ×t 𝐽)) ∈ V
56 sssigagen 34125 . . . 4 ((Clsd‘(𝐽 ×t 𝐽)) ∈ V → (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))))
5755, 56ax-mp 5 . . 3 (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
5854, 57sstri 4004 . 2 (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
59 sigagenss2 34130 . 2 (( (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (Clsd‘(𝐽 ×t 𝐽)) ∧ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) ∧ (Clsd‘(𝐽 ×t 𝐽)) ∈ V) → (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))))
6011, 58, 55, 59mp3an 1460 1 (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477  cdif 3959  cun 3960  wss 3962  c0 4338   cuni 4911  cmpt 5230   × cxp 5686  ran crn 5689   Fn wfn 6557  cfv 6562  (class class class)co 7430  cr 11151  +∞cpnf 11289  (,)cioo 13383  [,)cico 13385  topGenctg 17483  Topctop 22914  Clsdccld 23039   ×t ctx 23583  sigaGencsigagen 34118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-ioo 13387  df-ico 13389  df-topgen 17489  df-top 22915  df-topon 22932  df-bases 22968  df-cld 23042  df-tx 23585  df-siga 34089  df-sigagen 34119
This theorem is referenced by:  sxbrsigalem4  34268
  Copyright terms: Public domain W3C validator