Step | Hyp | Ref
| Expression |
1 | | sxbrsigalem0 32247 |
. . 3
⊢ ∪ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran
(𝑓 ∈ ℝ ↦
(ℝ × (𝑓[,)+∞)))) = (ℝ ×
ℝ) |
2 | | sxbrsiga.0 |
. . . . . 6
⊢ 𝐽 = (topGen‘ran
(,)) |
3 | | retop 23934 |
. . . . . 6
⊢
(topGen‘ran (,)) ∈ Top |
4 | 2, 3 | eqeltri 2836 |
. . . . 5
⊢ 𝐽 ∈ Top |
5 | 4, 4 | txtopi 22750 |
. . . 4
⊢ (𝐽 ×t 𝐽) ∈ Top |
6 | | uniretop 23935 |
. . . . . 6
⊢ ℝ =
∪ (topGen‘ran (,)) |
7 | 2 | unieqi 4853 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ (topGen‘ran (,)) |
8 | 6, 7 | eqtr4i 2770 |
. . . . 5
⊢ ℝ =
∪ 𝐽 |
9 | 4, 4, 8, 8 | txunii 22753 |
. . . 4
⊢ (ℝ
× ℝ) = ∪ (𝐽 ×t 𝐽) |
10 | 5, 9 | unicls 31862 |
. . 3
⊢ ∪ (Clsd‘(𝐽 ×t 𝐽)) = (ℝ ×
ℝ) |
11 | 1, 10 | eqtr4i 2770 |
. 2
⊢ ∪ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran
(𝑓 ∈ ℝ ↦
(ℝ × (𝑓[,)+∞)))) = ∪ (Clsd‘(𝐽 ×t 𝐽)) |
12 | | ovex 7317 |
. . . . . . 7
⊢ (𝑒[,)+∞) ∈
V |
13 | | reex 10971 |
. . . . . . 7
⊢ ℝ
∈ V |
14 | 12, 13 | xpex 7612 |
. . . . . 6
⊢ ((𝑒[,)+∞) × ℝ)
∈ V |
15 | | eqid 2739 |
. . . . . 6
⊢ (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) =
(𝑒 ∈ ℝ ↦
((𝑒[,)+∞) ×
ℝ)) |
16 | 14, 15 | fnmpti 6585 |
. . . . 5
⊢ (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
Fn ℝ |
17 | | oveq1 7291 |
. . . . . . . . 9
⊢ (𝑒 = 𝑢 → (𝑒[,)+∞) = (𝑢[,)+∞)) |
18 | 17 | xpeq1d 5619 |
. . . . . . . 8
⊢ (𝑒 = 𝑢 → ((𝑒[,)+∞) × ℝ) = ((𝑢[,)+∞) ×
ℝ)) |
19 | | ovex 7317 |
. . . . . . . . 9
⊢ (𝑢[,)+∞) ∈
V |
20 | 19, 13 | xpex 7612 |
. . . . . . . 8
⊢ ((𝑢[,)+∞) × ℝ)
∈ V |
21 | 18, 15, 20 | fvmpt 6884 |
. . . . . . 7
⊢ (𝑢 ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) ×
ℝ))‘𝑢) =
((𝑢[,)+∞) ×
ℝ)) |
22 | | icopnfcld 23940 |
. . . . . . . . 9
⊢ (𝑢 ∈ ℝ → (𝑢[,)+∞) ∈
(Clsd‘(topGen‘ran (,)))) |
23 | 2 | fveq2i 6786 |
. . . . . . . . 9
⊢
(Clsd‘𝐽) =
(Clsd‘(topGen‘ran (,))) |
24 | 22, 23 | eleqtrrdi 2851 |
. . . . . . . 8
⊢ (𝑢 ∈ ℝ → (𝑢[,)+∞) ∈
(Clsd‘𝐽)) |
25 | | dif0 4307 |
. . . . . . . . 9
⊢ (ℝ
∖ ∅) = ℝ |
26 | | 0opn 22062 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Top → ∅
∈ 𝐽) |
27 | 4, 26 | ax-mp 5 |
. . . . . . . . . 10
⊢ ∅
∈ 𝐽 |
28 | 8 | opncld 22193 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ ∅ ∈
𝐽) → (ℝ ∖
∅) ∈ (Clsd‘𝐽)) |
29 | 4, 27, 28 | mp2an 689 |
. . . . . . . . 9
⊢ (ℝ
∖ ∅) ∈ (Clsd‘𝐽) |
30 | 25, 29 | eqeltrri 2837 |
. . . . . . . 8
⊢ ℝ
∈ (Clsd‘𝐽) |
31 | | txcld 22763 |
. . . . . . . 8
⊢ (((𝑢[,)+∞) ∈
(Clsd‘𝐽) ∧
ℝ ∈ (Clsd‘𝐽)) → ((𝑢[,)+∞) × ℝ) ∈
(Clsd‘(𝐽
×t 𝐽))) |
32 | 24, 30, 31 | sylancl 586 |
. . . . . . 7
⊢ (𝑢 ∈ ℝ → ((𝑢[,)+∞) × ℝ)
∈ (Clsd‘(𝐽
×t 𝐽))) |
33 | 21, 32 | eqeltrd 2840 |
. . . . . 6
⊢ (𝑢 ∈ ℝ → ((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) ×
ℝ))‘𝑢) ∈
(Clsd‘(𝐽
×t 𝐽))) |
34 | 33 | rgen 3075 |
. . . . 5
⊢
∀𝑢 ∈
ℝ ((𝑒 ∈ ℝ
↦ ((𝑒[,)+∞)
× ℝ))‘𝑢)
∈ (Clsd‘(𝐽
×t 𝐽)) |
35 | | fnfvrnss 7003 |
. . . . 5
⊢ (((𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
Fn ℝ ∧ ∀𝑢
∈ ℝ ((𝑒 ∈
ℝ ↦ ((𝑒[,)+∞) × ℝ))‘𝑢) ∈ (Clsd‘(𝐽 ×t 𝐽))) → ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ))
⊆ (Clsd‘(𝐽
×t 𝐽))) |
36 | 16, 34, 35 | mp2an 689 |
. . . 4
⊢ ran
(𝑒 ∈ ℝ ↦
((𝑒[,)+∞) ×
ℝ)) ⊆ (Clsd‘(𝐽 ×t 𝐽)) |
37 | | ovex 7317 |
. . . . . . 7
⊢ (𝑓[,)+∞) ∈
V |
38 | 13, 37 | xpex 7612 |
. . . . . 6
⊢ (ℝ
× (𝑓[,)+∞))
∈ V |
39 | | eqid 2739 |
. . . . . 6
⊢ (𝑓 ∈ ℝ ↦ (ℝ
× (𝑓[,)+∞))) =
(𝑓 ∈ ℝ ↦
(ℝ × (𝑓[,)+∞))) |
40 | 38, 39 | fnmpti 6585 |
. . . . 5
⊢ (𝑓 ∈ ℝ ↦ (ℝ
× (𝑓[,)+∞))) Fn
ℝ |
41 | | oveq1 7291 |
. . . . . . . . 9
⊢ (𝑓 = 𝑣 → (𝑓[,)+∞) = (𝑣[,)+∞)) |
42 | 41 | xpeq2d 5620 |
. . . . . . . 8
⊢ (𝑓 = 𝑣 → (ℝ × (𝑓[,)+∞)) = (ℝ × (𝑣[,)+∞))) |
43 | | ovex 7317 |
. . . . . . . . 9
⊢ (𝑣[,)+∞) ∈
V |
44 | 13, 43 | xpex 7612 |
. . . . . . . 8
⊢ (ℝ
× (𝑣[,)+∞))
∈ V |
45 | 42, 39, 44 | fvmpt 6884 |
. . . . . . 7
⊢ (𝑣 ∈ ℝ → ((𝑓 ∈ ℝ ↦ (ℝ
× (𝑓[,)+∞)))‘𝑣) = (ℝ × (𝑣[,)+∞))) |
46 | | icopnfcld 23940 |
. . . . . . . . 9
⊢ (𝑣 ∈ ℝ → (𝑣[,)+∞) ∈
(Clsd‘(topGen‘ran (,)))) |
47 | 46, 23 | eleqtrrdi 2851 |
. . . . . . . 8
⊢ (𝑣 ∈ ℝ → (𝑣[,)+∞) ∈
(Clsd‘𝐽)) |
48 | | txcld 22763 |
. . . . . . . 8
⊢ ((ℝ
∈ (Clsd‘𝐽) ∧
(𝑣[,)+∞) ∈
(Clsd‘𝐽)) →
(ℝ × (𝑣[,)+∞)) ∈ (Clsd‘(𝐽 ×t 𝐽))) |
49 | 30, 47, 48 | sylancr 587 |
. . . . . . 7
⊢ (𝑣 ∈ ℝ → (ℝ
× (𝑣[,)+∞))
∈ (Clsd‘(𝐽
×t 𝐽))) |
50 | 45, 49 | eqeltrd 2840 |
. . . . . 6
⊢ (𝑣 ∈ ℝ → ((𝑓 ∈ ℝ ↦ (ℝ
× (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽))) |
51 | 50 | rgen 3075 |
. . . . 5
⊢
∀𝑣 ∈
ℝ ((𝑓 ∈ ℝ
↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽)) |
52 | | fnfvrnss 7003 |
. . . . 5
⊢ (((𝑓 ∈ ℝ ↦ (ℝ
× (𝑓[,)+∞))) Fn
ℝ ∧ ∀𝑣
∈ ℝ ((𝑓 ∈
ℝ ↦ (ℝ × (𝑓[,)+∞)))‘𝑣) ∈ (Clsd‘(𝐽 ×t 𝐽))) → ran (𝑓 ∈ ℝ ↦ (ℝ ×
(𝑓[,)+∞))) ⊆
(Clsd‘(𝐽
×t 𝐽))) |
53 | 40, 51, 52 | mp2an 689 |
. . . 4
⊢ ran
(𝑓 ∈ ℝ ↦
(ℝ × (𝑓[,)+∞))) ⊆ (Clsd‘(𝐽 ×t 𝐽)) |
54 | 36, 53 | unssi 4120 |
. . 3
⊢ (ran
(𝑒 ∈ ℝ ↦
((𝑒[,)+∞) ×
ℝ)) ∪ ran (𝑓
∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆ (Clsd‘(𝐽 ×t 𝐽)) |
55 | | fvex 6796 |
. . . 4
⊢
(Clsd‘(𝐽
×t 𝐽))
∈ V |
56 | | sssigagen 32122 |
. . . 4
⊢
((Clsd‘(𝐽
×t 𝐽))
∈ V → (Clsd‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))) |
57 | 55, 56 | ax-mp 5 |
. . 3
⊢
(Clsd‘(𝐽
×t 𝐽))
⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) |
58 | 54, 57 | sstri 3931 |
. 2
⊢ (ran
(𝑒 ∈ ℝ ↦
((𝑒[,)+∞) ×
ℝ)) ∪ ran (𝑓
∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) ⊆
(sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) |
59 | | sigagenss2 32127 |
. 2
⊢ ((∪ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran
(𝑓 ∈ ℝ ↦
(ℝ × (𝑓[,)+∞)))) = ∪ (Clsd‘(𝐽 ×t 𝐽)) ∧ (ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran
(𝑓 ∈ ℝ ↦
(ℝ × (𝑓[,)+∞)))) ⊆
(sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) ∧ (Clsd‘(𝐽 ×t 𝐽)) ∈ V) → (sigaGen‘(ran
(𝑒 ∈ ℝ ↦
((𝑒[,)+∞) ×
ℝ)) ∪ ran (𝑓
∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆
(sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))) |
60 | 11, 58, 55, 59 | mp3an 1460 |
1
⊢
(sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran
(𝑓 ∈ ℝ ↦
(ℝ × (𝑓[,)+∞))))) ⊆
(sigaGen‘(Clsd‘(𝐽 ×t 𝐽))) |