![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ntr0 | Structured version Visualization version GIF version |
Description: The interior of the empty set. (Contributed by NM, 2-Oct-2007.) |
Ref | Expression |
---|---|
ntr0 | ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0opn 22931 | . 2 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
2 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ ∪ 𝐽 | |
3 | eqid 2740 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | isopn3 23095 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ ∪ 𝐽) → (∅ ∈ 𝐽 ↔ ((int‘𝐽)‘∅) = ∅)) |
5 | 2, 4 | mpan2 690 | . 2 ⊢ (𝐽 ∈ Top → (∅ ∈ 𝐽 ↔ ((int‘𝐽)‘∅) = ∅)) |
6 | 1, 5 | mpbid 232 | 1 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘∅) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 intcnt 23046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-top 22921 df-ntr 23049 |
This theorem is referenced by: iccntr 24862 |
Copyright terms: Public domain | W3C validator |