MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icomnfordt Structured version   Visualization version   GIF version

Theorem icomnfordt 23245
Description: An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
icomnfordt (-∞[,)𝐴) ∈ (ordTop‘ ≤ )

Proof of Theorem icomnfordt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 eqid 2740 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
3 eqid 2740 . . . . . . . . 9 ran (,) = ran (,)
41, 2, 3leordtval 23242 . . . . . . . 8 (ordTop‘ ≤ ) = (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
5 letop 23235 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Top
64, 5eqeltrri 2841 . . . . . . 7 (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top
7 tgclb 22998 . . . . . . 7 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ↔ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top)
86, 7mpbir 231 . . . . . 6 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases
9 bastg 22994 . . . . . 6 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases → ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))))
108, 9ax-mp 5 . . . . 5 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
1110, 4sseqtrri 4046 . . . 4 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (ordTop‘ ≤ )
12 ssun1 4201 . . . . 5 (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ⊆ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))
13 ssun2 4202 . . . . . 6 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⊆ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)))
14 eqid 2740 . . . . . . . 8 (-∞[,)𝐴) = (-∞[,)𝐴)
15 oveq2 7456 . . . . . . . . 9 (𝑥 = 𝐴 → (-∞[,)𝑥) = (-∞[,)𝐴))
1615rspceeqv 3658 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ (-∞[,)𝐴) = (-∞[,)𝐴)) → ∃𝑥 ∈ ℝ* (-∞[,)𝐴) = (-∞[,)𝑥))
1714, 16mpan2 690 . . . . . . 7 (𝐴 ∈ ℝ* → ∃𝑥 ∈ ℝ* (-∞[,)𝐴) = (-∞[,)𝑥))
18 eqid 2740 . . . . . . . 8 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
19 ovex 7481 . . . . . . . 8 (-∞[,)𝑥) ∈ V
2018, 19elrnmpti 5985 . . . . . . 7 ((-∞[,)𝐴) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* (-∞[,)𝐴) = (-∞[,)𝑥))
2117, 20sylibr 234 . . . . . 6 (𝐴 ∈ ℝ* → (-∞[,)𝐴) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)))
2213, 21sselid 4006 . . . . 5 (𝐴 ∈ ℝ* → (-∞[,)𝐴) ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))))
2312, 22sselid 4006 . . . 4 (𝐴 ∈ ℝ* → (-∞[,)𝐴) ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
2411, 23sselid 4006 . . 3 (𝐴 ∈ ℝ* → (-∞[,)𝐴) ∈ (ordTop‘ ≤ ))
2524adantl 481 . 2 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞[,)𝐴) ∈ (ordTop‘ ≤ ))
26 df-ico 13413 . . . . . 6 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
2726ixxf 13417 . . . . 5 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
2827fdmi 6758 . . . 4 dom [,) = (ℝ* × ℝ*)
2928ndmov 7634 . . 3 (¬ (-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞[,)𝐴) = ∅)
30 0opn 22931 . . . 4 ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (ordTop‘ ≤ ))
315, 30ax-mp 5 . . 3 ∅ ∈ (ordTop‘ ≤ )
3229, 31eqeltrdi 2852 . 2 (¬ (-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞[,)𝐴) ∈ (ordTop‘ ≤ ))
3325, 32pm2.61i 182 1 (-∞[,)𝐴) ∈ (ordTop‘ ≤ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2108  wrex 3076  cun 3974  wss 3976  c0 4352  𝒫 cpw 4622  cmpt 5249   × cxp 5698  ran crn 5701  cfv 6573  (class class class)co 7448  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  (,)cioo 13407  (,]cioc 13408  [,)cico 13409  topGenctg 17497  ordTopcordt 17559  Topctop 22920  TopBasesctb 22973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-topgen 17503  df-ordt 17561  df-ps 18636  df-tsr 18637  df-top 22921  df-topon 22938  df-bases 22974
This theorem is referenced by:  xlimmnfvlem1  45753
  Copyright terms: Public domain W3C validator