| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . . . . . . 9
⊢ ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
| 2 | | eqid 2737 |
. . . . . . . . 9
⊢ ran
(𝑥 ∈
ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥)) |
| 3 | | eqid 2737 |
. . . . . . . . 9
⊢ ran (,) =
ran (,) |
| 4 | 1, 2, 3 | leordtval 23221 |
. . . . . . . 8
⊢
(ordTop‘ ≤ ) = (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)))
∪ ran (,))) |
| 5 | | letop 23214 |
. . . . . . . 8
⊢
(ordTop‘ ≤ ) ∈ Top |
| 6 | 4, 5 | eqeltrri 2838 |
. . . . . . 7
⊢
(topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)))
∪ ran (,))) ∈ Top |
| 7 | | tgclb 22977 |
. . . . . . 7
⊢ (((ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ∪ ran
(,)) ∈ TopBases ↔ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)))
∪ ran (,))) ∈ Top) |
| 8 | 6, 7 | mpbir 231 |
. . . . . 6
⊢ ((ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ∪ ran
(,)) ∈ TopBases |
| 9 | | bastg 22973 |
. . . . . 6
⊢ (((ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ∪ ran
(,)) ∈ TopBases → ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)))
∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)))
∪ ran (,)))) |
| 10 | 8, 9 | ax-mp 5 |
. . . . 5
⊢ ((ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ∪ ran
(,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)))
∪ ran (,))) |
| 11 | 10, 4 | sseqtrri 4033 |
. . . 4
⊢ ((ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ∪ ran
(,)) ⊆ (ordTop‘ ≤ ) |
| 12 | | ssun1 4178 |
. . . . 5
⊢ (ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ⊆
((ran (𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ∪ ran
(,)) |
| 13 | | ssun2 4179 |
. . . . . 6
⊢ ran
(𝑥 ∈
ℝ* ↦ (-∞[,)𝑥)) ⊆ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥))) |
| 14 | | eqid 2737 |
. . . . . . . 8
⊢
(-∞[,)𝐴) =
(-∞[,)𝐴) |
| 15 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (-∞[,)𝑥) = (-∞[,)𝐴)) |
| 16 | 15 | rspceeqv 3645 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ (-∞[,)𝐴) =
(-∞[,)𝐴)) →
∃𝑥 ∈
ℝ* (-∞[,)𝐴) = (-∞[,)𝑥)) |
| 17 | 14, 16 | mpan2 691 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ ∃𝑥 ∈
ℝ* (-∞[,)𝐴) = (-∞[,)𝑥)) |
| 18 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)) =
(𝑥 ∈
ℝ* ↦ (-∞[,)𝑥)) |
| 19 | | ovex 7464 |
. . . . . . . 8
⊢
(-∞[,)𝑥)
∈ V |
| 20 | 18, 19 | elrnmpti 5973 |
. . . . . . 7
⊢
((-∞[,)𝐴)
∈ ran (𝑥 ∈
ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* (-∞[,)𝐴) = (-∞[,)𝑥)) |
| 21 | 17, 20 | sylibr 234 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ (-∞[,)𝐴)
∈ ran (𝑥 ∈
ℝ* ↦ (-∞[,)𝑥))) |
| 22 | 13, 21 | sselid 3981 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ (-∞[,)𝐴)
∈ (ran (𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥)))) |
| 23 | 12, 22 | sselid 3981 |
. . . 4
⊢ (𝐴 ∈ ℝ*
→ (-∞[,)𝐴)
∈ ((ran (𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ∪ ran
(,))) |
| 24 | 11, 23 | sselid 3981 |
. . 3
⊢ (𝐴 ∈ ℝ*
→ (-∞[,)𝐴)
∈ (ordTop‘ ≤ )) |
| 25 | 24 | adantl 481 |
. 2
⊢
((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) →
(-∞[,)𝐴) ∈
(ordTop‘ ≤ )) |
| 26 | | df-ico 13393 |
. . . . . 6
⊢ [,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 27 | 26 | ixxf 13397 |
. . . . 5
⊢
[,):(ℝ* × ℝ*)⟶𝒫
ℝ* |
| 28 | 27 | fdmi 6747 |
. . . 4
⊢ dom [,) =
(ℝ* × ℝ*) |
| 29 | 28 | ndmov 7617 |
. . 3
⊢ (¬
(-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) →
(-∞[,)𝐴) =
∅) |
| 30 | | 0opn 22910 |
. . . 4
⊢
((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (ordTop‘
≤ )) |
| 31 | 5, 30 | ax-mp 5 |
. . 3
⊢ ∅
∈ (ordTop‘ ≤ ) |
| 32 | 29, 31 | eqeltrdi 2849 |
. 2
⊢ (¬
(-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) →
(-∞[,)𝐴) ∈
(ordTop‘ ≤ )) |
| 33 | 25, 32 | pm2.61i 182 |
1
⊢
(-∞[,)𝐴)
∈ (ordTop‘ ≤ ) |