MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icomnfordt Structured version   Visualization version   GIF version

Theorem icomnfordt 21827
Description: An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
icomnfordt (-∞[,)𝐴) ∈ (ordTop‘ ≤ )

Proof of Theorem icomnfordt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 eqid 2824 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
3 eqid 2824 . . . . . . . . 9 ran (,) = ran (,)
41, 2, 3leordtval 21824 . . . . . . . 8 (ordTop‘ ≤ ) = (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
5 letop 21817 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Top
64, 5eqeltrri 2913 . . . . . . 7 (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top
7 tgclb 21581 . . . . . . 7 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ↔ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top)
86, 7mpbir 233 . . . . . 6 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases
9 bastg 21577 . . . . . 6 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases → ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))))
108, 9ax-mp 5 . . . . 5 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
1110, 4sseqtrri 4007 . . . 4 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (ordTop‘ ≤ )
12 ssun1 4151 . . . . 5 (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ⊆ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))
13 ssun2 4152 . . . . . 6 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⊆ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)))
14 eqid 2824 . . . . . . . 8 (-∞[,)𝐴) = (-∞[,)𝐴)
15 oveq2 7167 . . . . . . . . 9 (𝑥 = 𝐴 → (-∞[,)𝑥) = (-∞[,)𝐴))
1615rspceeqv 3641 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ (-∞[,)𝐴) = (-∞[,)𝐴)) → ∃𝑥 ∈ ℝ* (-∞[,)𝐴) = (-∞[,)𝑥))
1714, 16mpan2 689 . . . . . . 7 (𝐴 ∈ ℝ* → ∃𝑥 ∈ ℝ* (-∞[,)𝐴) = (-∞[,)𝑥))
18 eqid 2824 . . . . . . . 8 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
19 ovex 7192 . . . . . . . 8 (-∞[,)𝑥) ∈ V
2018, 19elrnmpti 5835 . . . . . . 7 ((-∞[,)𝐴) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* (-∞[,)𝐴) = (-∞[,)𝑥))
2117, 20sylibr 236 . . . . . 6 (𝐴 ∈ ℝ* → (-∞[,)𝐴) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)))
2213, 21sseldi 3968 . . . . 5 (𝐴 ∈ ℝ* → (-∞[,)𝐴) ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))))
2312, 22sseldi 3968 . . . 4 (𝐴 ∈ ℝ* → (-∞[,)𝐴) ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
2411, 23sseldi 3968 . . 3 (𝐴 ∈ ℝ* → (-∞[,)𝐴) ∈ (ordTop‘ ≤ ))
2524adantl 484 . 2 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞[,)𝐴) ∈ (ordTop‘ ≤ ))
26 df-ico 12747 . . . . . 6 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
2726ixxf 12751 . . . . 5 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
2827fdmi 6527 . . . 4 dom [,) = (ℝ* × ℝ*)
2928ndmov 7335 . . 3 (¬ (-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞[,)𝐴) = ∅)
30 0opn 21515 . . . 4 ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (ordTop‘ ≤ ))
315, 30ax-mp 5 . . 3 ∅ ∈ (ordTop‘ ≤ )
3229, 31eqeltrdi 2924 . 2 (¬ (-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞[,)𝐴) ∈ (ordTop‘ ≤ ))
3325, 32pm2.61i 184 1 (-∞[,)𝐴) ∈ (ordTop‘ ≤ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1536  wcel 2113  wrex 3142  cun 3937  wss 3939  c0 4294  𝒫 cpw 4542  cmpt 5149   × cxp 5556  ran crn 5559  cfv 6358  (class class class)co 7159  +∞cpnf 10675  -∞cmnf 10676  *cxr 10677   < clt 10678  cle 10679  (,)cioo 12741  (,]cioc 12742  [,)cico 12743  topGenctg 16714  ordTopcordt 16775  Topctop 21504  TopBasesctb 21556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fi 8878  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-topgen 16720  df-ordt 16777  df-ps 17813  df-tsr 17814  df-top 21505  df-topon 21522  df-bases 21557
This theorem is referenced by:  xlimmnfvlem1  42119
  Copyright terms: Public domain W3C validator