Step | Hyp | Ref
| Expression |
1 | | eqid 2737 |
. . . . . . . . 9
⊢ ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
2 | | eqid 2737 |
. . . . . . . . 9
⊢ ran
(𝑥 ∈
ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥)) |
3 | | eqid 2737 |
. . . . . . . . 9
⊢ ran (,) =
ran (,) |
4 | 1, 2, 3 | leordtval 22477 |
. . . . . . . 8
⊢
(ordTop‘ ≤ ) = (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)))
∪ ran (,))) |
5 | | letop 22470 |
. . . . . . . 8
⊢
(ordTop‘ ≤ ) ∈ Top |
6 | 4, 5 | eqeltrri 2835 |
. . . . . . 7
⊢
(topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)))
∪ ran (,))) ∈ Top |
7 | | tgclb 22233 |
. . . . . . 7
⊢ (((ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ∪ ran
(,)) ∈ TopBases ↔ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)))
∪ ran (,))) ∈ Top) |
8 | 6, 7 | mpbir 230 |
. . . . . 6
⊢ ((ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ∪ ran
(,)) ∈ TopBases |
9 | | bastg 22229 |
. . . . . 6
⊢ (((ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ∪ ran
(,)) ∈ TopBases → ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)))
∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)))
∪ ran (,)))) |
10 | 8, 9 | ax-mp 5 |
. . . . 5
⊢ ((ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ∪ ran
(,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)))
∪ ran (,))) |
11 | 10, 4 | sseqtrri 3979 |
. . . 4
⊢ ((ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ∪ ran
(,)) ⊆ (ordTop‘ ≤ ) |
12 | | ssun1 4130 |
. . . . 5
⊢ (ran
(𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ⊆
((ran (𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ∪ ran
(,)) |
13 | | ssun2 4131 |
. . . . . 6
⊢ ran
(𝑥 ∈
ℝ* ↦ (-∞[,)𝑥)) ⊆ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥))) |
14 | | eqid 2737 |
. . . . . . . 8
⊢
(-∞[,)𝐴) =
(-∞[,)𝐴) |
15 | | oveq2 7357 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (-∞[,)𝑥) = (-∞[,)𝐴)) |
16 | 15 | rspceeqv 3593 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ (-∞[,)𝐴) =
(-∞[,)𝐴)) →
∃𝑥 ∈
ℝ* (-∞[,)𝐴) = (-∞[,)𝑥)) |
17 | 14, 16 | mpan2 689 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ ∃𝑥 ∈
ℝ* (-∞[,)𝐴) = (-∞[,)𝑥)) |
18 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ*
↦ (-∞[,)𝑥)) =
(𝑥 ∈
ℝ* ↦ (-∞[,)𝑥)) |
19 | | ovex 7382 |
. . . . . . . 8
⊢
(-∞[,)𝑥)
∈ V |
20 | 18, 19 | elrnmpti 5911 |
. . . . . . 7
⊢
((-∞[,)𝐴)
∈ ran (𝑥 ∈
ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* (-∞[,)𝐴) = (-∞[,)𝑥)) |
21 | 17, 20 | sylibr 233 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ (-∞[,)𝐴)
∈ ran (𝑥 ∈
ℝ* ↦ (-∞[,)𝑥))) |
22 | 13, 21 | sselid 3940 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ (-∞[,)𝐴)
∈ (ran (𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥)))) |
23 | 12, 22 | sselid 3940 |
. . . 4
⊢ (𝐴 ∈ ℝ*
→ (-∞[,)𝐴)
∈ ((ran (𝑥 ∈
ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦
(-∞[,)𝑥))) ∪ ran
(,))) |
24 | 11, 23 | sselid 3940 |
. . 3
⊢ (𝐴 ∈ ℝ*
→ (-∞[,)𝐴)
∈ (ordTop‘ ≤ )) |
25 | 24 | adantl 483 |
. 2
⊢
((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) →
(-∞[,)𝐴) ∈
(ordTop‘ ≤ )) |
26 | | df-ico 13198 |
. . . . . 6
⊢ [,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
27 | 26 | ixxf 13202 |
. . . . 5
⊢
[,):(ℝ* × ℝ*)⟶𝒫
ℝ* |
28 | 27 | fdmi 6675 |
. . . 4
⊢ dom [,) =
(ℝ* × ℝ*) |
29 | 28 | ndmov 7530 |
. . 3
⊢ (¬
(-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) →
(-∞[,)𝐴) =
∅) |
30 | | 0opn 22166 |
. . . 4
⊢
((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (ordTop‘
≤ )) |
31 | 5, 30 | ax-mp 5 |
. . 3
⊢ ∅
∈ (ordTop‘ ≤ ) |
32 | 29, 31 | eqeltrdi 2846 |
. 2
⊢ (¬
(-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) →
(-∞[,)𝐴) ∈
(ordTop‘ ≤ )) |
33 | 25, 32 | pm2.61i 182 |
1
⊢
(-∞[,)𝐴)
∈ (ordTop‘ ≤ ) |