MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icomnfordt Structured version   Visualization version   GIF version

Theorem icomnfordt 21818
Description: An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
icomnfordt (-∞[,)𝐴) ∈ (ordTop‘ ≤ )

Proof of Theorem icomnfordt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 eqid 2821 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
3 eqid 2821 . . . . . . . . 9 ran (,) = ran (,)
41, 2, 3leordtval 21815 . . . . . . . 8 (ordTop‘ ≤ ) = (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
5 letop 21808 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Top
64, 5eqeltrri 2910 . . . . . . 7 (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top
7 tgclb 21572 . . . . . . 7 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ↔ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top)
86, 7mpbir 233 . . . . . 6 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases
9 bastg 21568 . . . . . 6 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases → ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))))
108, 9ax-mp 5 . . . . 5 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
1110, 4sseqtrri 4003 . . . 4 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (ordTop‘ ≤ )
12 ssun1 4147 . . . . 5 (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ⊆ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))
13 ssun2 4148 . . . . . 6 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⊆ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)))
14 eqid 2821 . . . . . . . 8 (-∞[,)𝐴) = (-∞[,)𝐴)
15 oveq2 7158 . . . . . . . . 9 (𝑥 = 𝐴 → (-∞[,)𝑥) = (-∞[,)𝐴))
1615rspceeqv 3637 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ (-∞[,)𝐴) = (-∞[,)𝐴)) → ∃𝑥 ∈ ℝ* (-∞[,)𝐴) = (-∞[,)𝑥))
1714, 16mpan2 689 . . . . . . 7 (𝐴 ∈ ℝ* → ∃𝑥 ∈ ℝ* (-∞[,)𝐴) = (-∞[,)𝑥))
18 eqid 2821 . . . . . . . 8 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
19 ovex 7183 . . . . . . . 8 (-∞[,)𝑥) ∈ V
2018, 19elrnmpti 5826 . . . . . . 7 ((-∞[,)𝐴) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* (-∞[,)𝐴) = (-∞[,)𝑥))
2117, 20sylibr 236 . . . . . 6 (𝐴 ∈ ℝ* → (-∞[,)𝐴) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)))
2213, 21sseldi 3964 . . . . 5 (𝐴 ∈ ℝ* → (-∞[,)𝐴) ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))))
2312, 22sseldi 3964 . . . 4 (𝐴 ∈ ℝ* → (-∞[,)𝐴) ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
2411, 23sseldi 3964 . . 3 (𝐴 ∈ ℝ* → (-∞[,)𝐴) ∈ (ordTop‘ ≤ ))
2524adantl 484 . 2 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞[,)𝐴) ∈ (ordTop‘ ≤ ))
26 df-ico 12738 . . . . . 6 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
2726ixxf 12742 . . . . 5 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
2827fdmi 6518 . . . 4 dom [,) = (ℝ* × ℝ*)
2928ndmov 7326 . . 3 (¬ (-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞[,)𝐴) = ∅)
30 0opn 21506 . . . 4 ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (ordTop‘ ≤ ))
315, 30ax-mp 5 . . 3 ∅ ∈ (ordTop‘ ≤ )
3229, 31eqeltrdi 2921 . 2 (¬ (-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞[,)𝐴) ∈ (ordTop‘ ≤ ))
3325, 32pm2.61i 184 1 (-∞[,)𝐴) ∈ (ordTop‘ ≤ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1533  wcel 2110  wrex 3139  cun 3933  wss 3935  c0 4290  𝒫 cpw 4538  cmpt 5138   × cxp 5547  ran crn 5550  cfv 6349  (class class class)co 7150  +∞cpnf 10666  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670  (,)cioo 12732  (,]cioc 12733  [,)cico 12734  topGenctg 16705  ordTopcordt 16766  Topctop 21495  TopBasesctb 21547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-topgen 16711  df-ordt 16768  df-ps 17804  df-tsr 17805  df-top 21496  df-topon 21513  df-bases 21548
This theorem is referenced by:  xlimmnfvlem1  42106
  Copyright terms: Public domain W3C validator