Step | Hyp | Ref
| Expression |
1 | | elpri 4649 |
. . . . . . 7
β’ (π₯ β {β
, π΄} β (π₯ = β
β¨ π₯ = π΄)) |
2 | | topontop 22406 |
. . . . . . . . . . 11
β’ (π½ β (TopOnβπ) β π½ β Top) |
3 | 2 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π½ β (TopOnβπ) β§ π΄ β π) β§ π:πβΆπ΄) β π½ β Top) |
4 | | 0opn 22397 |
. . . . . . . . . 10
β’ (π½ β Top β β
β π½) |
5 | 3, 4 | syl 17 |
. . . . . . . . 9
β’ (((π½ β (TopOnβπ) β§ π΄ β π) β§ π:πβΆπ΄) β β
β π½) |
6 | | imaeq2 6053 |
. . . . . . . . . . 11
β’ (π₯ = β
β (β‘π β π₯) = (β‘π β β
)) |
7 | | ima0 6073 |
. . . . . . . . . . 11
β’ (β‘π β β
) = β
|
8 | 6, 7 | eqtrdi 2788 |
. . . . . . . . . 10
β’ (π₯ = β
β (β‘π β π₯) = β
) |
9 | 8 | eleq1d 2818 |
. . . . . . . . 9
β’ (π₯ = β
β ((β‘π β π₯) β π½ β β
β π½)) |
10 | 5, 9 | syl5ibrcom 246 |
. . . . . . . 8
β’ (((π½ β (TopOnβπ) β§ π΄ β π) β§ π:πβΆπ΄) β (π₯ = β
β (β‘π β π₯) β π½)) |
11 | | fimacnv 6736 |
. . . . . . . . . . 11
β’ (π:πβΆπ΄ β (β‘π β π΄) = π) |
12 | 11 | adantl 482 |
. . . . . . . . . 10
β’ (((π½ β (TopOnβπ) β§ π΄ β π) β§ π:πβΆπ΄) β (β‘π β π΄) = π) |
13 | | toponmax 22419 |
. . . . . . . . . . 11
β’ (π½ β (TopOnβπ) β π β π½) |
14 | 13 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π½ β (TopOnβπ) β§ π΄ β π) β§ π:πβΆπ΄) β π β π½) |
15 | 12, 14 | eqeltrd 2833 |
. . . . . . . . 9
β’ (((π½ β (TopOnβπ) β§ π΄ β π) β§ π:πβΆπ΄) β (β‘π β π΄) β π½) |
16 | | imaeq2 6053 |
. . . . . . . . . 10
β’ (π₯ = π΄ β (β‘π β π₯) = (β‘π β π΄)) |
17 | 16 | eleq1d 2818 |
. . . . . . . . 9
β’ (π₯ = π΄ β ((β‘π β π₯) β π½ β (β‘π β π΄) β π½)) |
18 | 15, 17 | syl5ibrcom 246 |
. . . . . . . 8
β’ (((π½ β (TopOnβπ) β§ π΄ β π) β§ π:πβΆπ΄) β (π₯ = π΄ β (β‘π β π₯) β π½)) |
19 | 10, 18 | jaod 857 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ π΄ β π) β§ π:πβΆπ΄) β ((π₯ = β
β¨ π₯ = π΄) β (β‘π β π₯) β π½)) |
20 | 1, 19 | syl5 34 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ π΄ β π) β§ π:πβΆπ΄) β (π₯ β {β
, π΄} β (β‘π β π₯) β π½)) |
21 | 20 | ralrimiv 3145 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ π΄ β π) β§ π:πβΆπ΄) β βπ₯ β {β
, π΄} (β‘π β π₯) β π½) |
22 | 21 | ex 413 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π:πβΆπ΄ β βπ₯ β {β
, π΄} (β‘π β π₯) β π½)) |
23 | 22 | pm4.71d 562 |
. . 3
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π:πβΆπ΄ β (π:πβΆπ΄ β§ βπ₯ β {β
, π΄} (β‘π β π₯) β π½))) |
24 | | id 22 |
. . . 4
β’ (π΄ β π β π΄ β π) |
25 | | elmapg 8829 |
. . . 4
β’ ((π΄ β π β§ π β π½) β (π β (π΄ βm π) β π:πβΆπ΄)) |
26 | 24, 13, 25 | syl2anr 597 |
. . 3
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π β (π΄ βm π) β π:πβΆπ΄)) |
27 | | indistopon 22495 |
. . . 4
β’ (π΄ β π β {β
, π΄} β (TopOnβπ΄)) |
28 | | iscn 22730 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ {β
, π΄} β (TopOnβπ΄)) β (π β (π½ Cn {β
, π΄}) β (π:πβΆπ΄ β§ βπ₯ β {β
, π΄} (β‘π β π₯) β π½))) |
29 | 27, 28 | sylan2 593 |
. . 3
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π β (π½ Cn {β
, π΄}) β (π:πβΆπ΄ β§ βπ₯ β {β
, π΄} (β‘π β π₯) β π½))) |
30 | 23, 26, 29 | 3bitr4rd 311 |
. 2
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π β (π½ Cn {β
, π΄}) β π β (π΄ βm π))) |
31 | 30 | eqrdv 2730 |
1
β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ Cn {β
, π΄}) = (π΄ βm π)) |