MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnindis Structured version   Visualization version   GIF version

Theorem cnindis 22787
Description: Every function is continuous when the codomain is indiscrete (trivial). (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnindis ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) β†’ (𝐽 Cn {βˆ…, 𝐴}) = (𝐴 ↑m 𝑋))

Proof of Theorem cnindis
Dummy variables π‘₯ 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpri 4649 . . . . . . 7 (π‘₯ ∈ {βˆ…, 𝐴} β†’ (π‘₯ = βˆ… ∨ π‘₯ = 𝐴))
2 topontop 22406 . . . . . . . . . . 11 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
32ad2antrr 724 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:π‘‹βŸΆπ΄) β†’ 𝐽 ∈ Top)
4 0opn 22397 . . . . . . . . . 10 (𝐽 ∈ Top β†’ βˆ… ∈ 𝐽)
53, 4syl 17 . . . . . . . . 9 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:π‘‹βŸΆπ΄) β†’ βˆ… ∈ 𝐽)
6 imaeq2 6053 . . . . . . . . . . 11 (π‘₯ = βˆ… β†’ (◑𝑓 β€œ π‘₯) = (◑𝑓 β€œ βˆ…))
7 ima0 6073 . . . . . . . . . . 11 (◑𝑓 β€œ βˆ…) = βˆ…
86, 7eqtrdi 2788 . . . . . . . . . 10 (π‘₯ = βˆ… β†’ (◑𝑓 β€œ π‘₯) = βˆ…)
98eleq1d 2818 . . . . . . . . 9 (π‘₯ = βˆ… β†’ ((◑𝑓 β€œ π‘₯) ∈ 𝐽 ↔ βˆ… ∈ 𝐽))
105, 9syl5ibrcom 246 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:π‘‹βŸΆπ΄) β†’ (π‘₯ = βˆ… β†’ (◑𝑓 β€œ π‘₯) ∈ 𝐽))
11 fimacnv 6736 . . . . . . . . . . 11 (𝑓:π‘‹βŸΆπ΄ β†’ (◑𝑓 β€œ 𝐴) = 𝑋)
1211adantl 482 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:π‘‹βŸΆπ΄) β†’ (◑𝑓 β€œ 𝐴) = 𝑋)
13 toponmax 22419 . . . . . . . . . . 11 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 ∈ 𝐽)
1413ad2antrr 724 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:π‘‹βŸΆπ΄) β†’ 𝑋 ∈ 𝐽)
1512, 14eqeltrd 2833 . . . . . . . . 9 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:π‘‹βŸΆπ΄) β†’ (◑𝑓 β€œ 𝐴) ∈ 𝐽)
16 imaeq2 6053 . . . . . . . . . 10 (π‘₯ = 𝐴 β†’ (◑𝑓 β€œ π‘₯) = (◑𝑓 β€œ 𝐴))
1716eleq1d 2818 . . . . . . . . 9 (π‘₯ = 𝐴 β†’ ((◑𝑓 β€œ π‘₯) ∈ 𝐽 ↔ (◑𝑓 β€œ 𝐴) ∈ 𝐽))
1815, 17syl5ibrcom 246 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:π‘‹βŸΆπ΄) β†’ (π‘₯ = 𝐴 β†’ (◑𝑓 β€œ π‘₯) ∈ 𝐽))
1910, 18jaod 857 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:π‘‹βŸΆπ΄) β†’ ((π‘₯ = βˆ… ∨ π‘₯ = 𝐴) β†’ (◑𝑓 β€œ π‘₯) ∈ 𝐽))
201, 19syl5 34 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:π‘‹βŸΆπ΄) β†’ (π‘₯ ∈ {βˆ…, 𝐴} β†’ (◑𝑓 β€œ π‘₯) ∈ 𝐽))
2120ralrimiv 3145 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) ∧ 𝑓:π‘‹βŸΆπ΄) β†’ βˆ€π‘₯ ∈ {βˆ…, 𝐴} (◑𝑓 β€œ π‘₯) ∈ 𝐽)
2221ex 413 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) β†’ (𝑓:π‘‹βŸΆπ΄ β†’ βˆ€π‘₯ ∈ {βˆ…, 𝐴} (◑𝑓 β€œ π‘₯) ∈ 𝐽))
2322pm4.71d 562 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) β†’ (𝑓:π‘‹βŸΆπ΄ ↔ (𝑓:π‘‹βŸΆπ΄ ∧ βˆ€π‘₯ ∈ {βˆ…, 𝐴} (◑𝑓 β€œ π‘₯) ∈ 𝐽)))
24 id 22 . . . 4 (𝐴 ∈ 𝑉 β†’ 𝐴 ∈ 𝑉)
25 elmapg 8829 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐽) β†’ (𝑓 ∈ (𝐴 ↑m 𝑋) ↔ 𝑓:π‘‹βŸΆπ΄))
2624, 13, 25syl2anr 597 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) β†’ (𝑓 ∈ (𝐴 ↑m 𝑋) ↔ 𝑓:π‘‹βŸΆπ΄))
27 indistopon 22495 . . . 4 (𝐴 ∈ 𝑉 β†’ {βˆ…, 𝐴} ∈ (TopOnβ€˜π΄))
28 iscn 22730 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ {βˆ…, 𝐴} ∈ (TopOnβ€˜π΄)) β†’ (𝑓 ∈ (𝐽 Cn {βˆ…, 𝐴}) ↔ (𝑓:π‘‹βŸΆπ΄ ∧ βˆ€π‘₯ ∈ {βˆ…, 𝐴} (◑𝑓 β€œ π‘₯) ∈ 𝐽)))
2927, 28sylan2 593 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) β†’ (𝑓 ∈ (𝐽 Cn {βˆ…, 𝐴}) ↔ (𝑓:π‘‹βŸΆπ΄ ∧ βˆ€π‘₯ ∈ {βˆ…, 𝐴} (◑𝑓 β€œ π‘₯) ∈ 𝐽)))
3023, 26, 293bitr4rd 311 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) β†’ (𝑓 ∈ (𝐽 Cn {βˆ…, 𝐴}) ↔ 𝑓 ∈ (𝐴 ↑m 𝑋)))
3130eqrdv 2730 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) β†’ (𝐽 Cn {βˆ…, 𝐴}) = (𝐴 ↑m 𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆ…c0 4321  {cpr 4629  β—‘ccnv 5674   β€œ cima 5678  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ↑m cmap 8816  Topctop 22386  TopOnctopon 22403   Cn ccn 22719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-top 22387  df-topon 22404  df-cn 22722
This theorem is referenced by:  indishmph  23293  indistgp  23595  indispconn  34213
  Copyright terms: Public domain W3C validator