MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnindis Structured version   Visualization version   GIF version

Theorem cnindis 22443
Description: Every function is continuous when the codomain is indiscrete (trivial). (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnindis ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐽 Cn {∅, 𝐴}) = (𝐴m 𝑋))

Proof of Theorem cnindis
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpri 4583 . . . . . . 7 (𝑥 ∈ {∅, 𝐴} → (𝑥 = ∅ ∨ 𝑥 = 𝐴))
2 topontop 22062 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
32ad2antrr 723 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → 𝐽 ∈ Top)
4 0opn 22053 . . . . . . . . . 10 (𝐽 ∈ Top → ∅ ∈ 𝐽)
53, 4syl 17 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → ∅ ∈ 𝐽)
6 imaeq2 5965 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑓𝑥) = (𝑓 “ ∅))
7 ima0 5985 . . . . . . . . . . 11 (𝑓 “ ∅) = ∅
86, 7eqtrdi 2794 . . . . . . . . . 10 (𝑥 = ∅ → (𝑓𝑥) = ∅)
98eleq1d 2823 . . . . . . . . 9 (𝑥 = ∅ → ((𝑓𝑥) ∈ 𝐽 ↔ ∅ ∈ 𝐽))
105, 9syl5ibrcom 246 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑥 = ∅ → (𝑓𝑥) ∈ 𝐽))
11 fimacnv 6622 . . . . . . . . . . 11 (𝑓:𝑋𝐴 → (𝑓𝐴) = 𝑋)
1211adantl 482 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑓𝐴) = 𝑋)
13 toponmax 22075 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
1413ad2antrr 723 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → 𝑋𝐽)
1512, 14eqeltrd 2839 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑓𝐴) ∈ 𝐽)
16 imaeq2 5965 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑓𝑥) = (𝑓𝐴))
1716eleq1d 2823 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑓𝑥) ∈ 𝐽 ↔ (𝑓𝐴) ∈ 𝐽))
1815, 17syl5ibrcom 246 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑥 = 𝐴 → (𝑓𝑥) ∈ 𝐽))
1910, 18jaod 856 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) → (𝑓𝑥) ∈ 𝐽))
201, 19syl5 34 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑥 ∈ {∅, 𝐴} → (𝑓𝑥) ∈ 𝐽))
2120ralrimiv 3102 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽)
2221ex 413 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓:𝑋𝐴 → ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽))
2322pm4.71d 562 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓:𝑋𝐴 ↔ (𝑓:𝑋𝐴 ∧ ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽)))
24 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
25 elmapg 8628 . . . 4 ((𝐴𝑉𝑋𝐽) → (𝑓 ∈ (𝐴m 𝑋) ↔ 𝑓:𝑋𝐴))
2624, 13, 25syl2anr 597 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓 ∈ (𝐴m 𝑋) ↔ 𝑓:𝑋𝐴))
27 indistopon 22151 . . . 4 (𝐴𝑉 → {∅, 𝐴} ∈ (TopOn‘𝐴))
28 iscn 22386 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ {∅, 𝐴} ∈ (TopOn‘𝐴)) → (𝑓 ∈ (𝐽 Cn {∅, 𝐴}) ↔ (𝑓:𝑋𝐴 ∧ ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽)))
2927, 28sylan2 593 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓 ∈ (𝐽 Cn {∅, 𝐴}) ↔ (𝑓:𝑋𝐴 ∧ ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽)))
3023, 26, 293bitr4rd 312 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓 ∈ (𝐽 Cn {∅, 𝐴}) ↔ 𝑓 ∈ (𝐴m 𝑋)))
3130eqrdv 2736 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐽 Cn {∅, 𝐴}) = (𝐴m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  c0 4256  {cpr 4563  ccnv 5588  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Topctop 22042  TopOnctopon 22059   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-top 22043  df-topon 22060  df-cn 22378
This theorem is referenced by:  indishmph  22949  indistgp  23251  indispconn  33196
  Copyright terms: Public domain W3C validator