MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnindis Structured version   Visualization version   GIF version

Theorem cnindis 21572
Description: Every function is continuous when the codomain is indiscrete (trivial). (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnindis ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐽 Cn {∅, 𝐴}) = (𝐴𝑚 𝑋))

Proof of Theorem cnindis
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpri 4488 . . . . . . 7 (𝑥 ∈ {∅, 𝐴} → (𝑥 = ∅ ∨ 𝑥 = 𝐴))
2 topontop 21193 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
32ad2antrr 722 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → 𝐽 ∈ Top)
4 0opn 21184 . . . . . . . . . 10 (𝐽 ∈ Top → ∅ ∈ 𝐽)
53, 4syl 17 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → ∅ ∈ 𝐽)
6 imaeq2 5794 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑓𝑥) = (𝑓 “ ∅))
7 ima0 5813 . . . . . . . . . . 11 (𝑓 “ ∅) = ∅
86, 7syl6eq 2845 . . . . . . . . . 10 (𝑥 = ∅ → (𝑓𝑥) = ∅)
98eleq1d 2865 . . . . . . . . 9 (𝑥 = ∅ → ((𝑓𝑥) ∈ 𝐽 ↔ ∅ ∈ 𝐽))
105, 9syl5ibrcom 248 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑥 = ∅ → (𝑓𝑥) ∈ 𝐽))
11 fimacnv 6695 . . . . . . . . . . 11 (𝑓:𝑋𝐴 → (𝑓𝐴) = 𝑋)
1211adantl 482 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑓𝐴) = 𝑋)
13 toponmax 21206 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
1413ad2antrr 722 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → 𝑋𝐽)
1512, 14eqeltrd 2881 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑓𝐴) ∈ 𝐽)
16 imaeq2 5794 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑓𝑥) = (𝑓𝐴))
1716eleq1d 2865 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑓𝑥) ∈ 𝐽 ↔ (𝑓𝐴) ∈ 𝐽))
1815, 17syl5ibrcom 248 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑥 = 𝐴 → (𝑓𝑥) ∈ 𝐽))
1910, 18jaod 854 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) → (𝑓𝑥) ∈ 𝐽))
201, 19syl5 34 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑥 ∈ {∅, 𝐴} → (𝑓𝑥) ∈ 𝐽))
2120ralrimiv 3146 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽)
2221ex 413 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓:𝑋𝐴 → ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽))
2322pm4.71d 562 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓:𝑋𝐴 ↔ (𝑓:𝑋𝐴 ∧ ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽)))
24 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
25 elmapg 8260 . . . 4 ((𝐴𝑉𝑋𝐽) → (𝑓 ∈ (𝐴𝑚 𝑋) ↔ 𝑓:𝑋𝐴))
2624, 13, 25syl2anr 596 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓 ∈ (𝐴𝑚 𝑋) ↔ 𝑓:𝑋𝐴))
27 indistopon 21281 . . . 4 (𝐴𝑉 → {∅, 𝐴} ∈ (TopOn‘𝐴))
28 iscn 21515 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ {∅, 𝐴} ∈ (TopOn‘𝐴)) → (𝑓 ∈ (𝐽 Cn {∅, 𝐴}) ↔ (𝑓:𝑋𝐴 ∧ ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽)))
2927, 28sylan2 592 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓 ∈ (𝐽 Cn {∅, 𝐴}) ↔ (𝑓:𝑋𝐴 ∧ ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽)))
3023, 26, 293bitr4rd 313 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓 ∈ (𝐽 Cn {∅, 𝐴}) ↔ 𝑓 ∈ (𝐴𝑚 𝑋)))
3130eqrdv 2791 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐽 Cn {∅, 𝐴}) = (𝐴𝑚 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842   = wceq 1520  wcel 2079  wral 3103  c0 4206  {cpr 4468  ccnv 5434  cima 5438  wf 6213  cfv 6217  (class class class)co 7007  𝑚 cmap 8247  Topctop 21173  TopOnctopon 21190   Cn ccn 21504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-sbc 3702  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-fv 6225  df-ov 7010  df-oprab 7011  df-mpo 7012  df-map 8249  df-top 21174  df-topon 21191  df-cn 21507
This theorem is referenced by:  indishmph  22078  indistgp  22380  indispconn  32045
  Copyright terms: Public domain W3C validator