Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ex-sategoelelomsuc Structured version   Visualization version   GIF version

Theorem ex-sategoelelomsuc 35438
Description: Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 𝑍 ∈ suc 𝑍 = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.)
Hypothesis
Ref Expression
ex-sategoelelomsuc.s 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍))
Assertion
Ref Expression
ex-sategoelelomsuc (𝑍 ∈ ω → 𝑆 ∈ (ω Sat (2o𝑔1o)))
Distinct variable group:   𝑥,𝑍
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem ex-sategoelelomsuc
StepHypRef Expression
1 id 22 . . . . . 6 (𝑍 ∈ ω → 𝑍 ∈ ω)
2 peano2 7815 . . . . . 6 (𝑍 ∈ ω → suc 𝑍 ∈ ω)
31, 2ifcld 4520 . . . . 5 (𝑍 ∈ ω → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω)
43adantr 480 . . . 4 ((𝑍 ∈ ω ∧ 𝑥 ∈ ω) → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω)
5 ex-sategoelelomsuc.s . . . 4 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍))
64, 5fmptd 7042 . . 3 (𝑍 ∈ ω → 𝑆:ω⟶ω)
7 omex 9528 . . . . 5 ω ∈ V
87a1i 11 . . . 4 (𝑍 ∈ ω → ω ∈ V)
98, 8elmapd 8759 . . 3 (𝑍 ∈ ω → (𝑆 ∈ (ω ↑m ω) ↔ 𝑆:ω⟶ω))
106, 9mpbird 257 . 2 (𝑍 ∈ ω → 𝑆 ∈ (ω ↑m ω))
11 sucidg 6385 . . 3 (𝑍 ∈ ω → 𝑍 ∈ suc 𝑍)
125a1i 11 . . . 4 (𝑍 ∈ ω → 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)))
13 iftrue 4479 . . . . 5 (𝑥 = 2o → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍)
1413adantl 481 . . . 4 ((𝑍 ∈ ω ∧ 𝑥 = 2o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍)
15 2onn 8552 . . . . 5 2o ∈ ω
1615a1i 11 . . . 4 (𝑍 ∈ ω → 2o ∈ ω)
1712, 14, 16, 1fvmptd 6931 . . 3 (𝑍 ∈ ω → (𝑆‘2o) = 𝑍)
18 1one2o 8556 . . . . . . . 8 1o ≠ 2o
1918neii 2928 . . . . . . 7 ¬ 1o = 2o
20 eqeq1 2734 . . . . . . 7 (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o))
2119, 20mtbiri 327 . . . . . 6 (𝑥 = 1o → ¬ 𝑥 = 2o)
2221iffalsed 4484 . . . . 5 (𝑥 = 1o → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍)
2322adantl 481 . . . 4 ((𝑍 ∈ ω ∧ 𝑥 = 1o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍)
24 1onn 8550 . . . . 5 1o ∈ ω
2524a1i 11 . . . 4 (𝑍 ∈ ω → 1o ∈ ω)
2612, 23, 25, 2fvmptd 6931 . . 3 (𝑍 ∈ ω → (𝑆‘1o) = suc 𝑍)
2711, 17, 263eltr4d 2844 . 2 (𝑍 ∈ ω → (𝑆‘2o) ∈ (𝑆‘1o))
2815, 24pm3.2i 470 . . . 4 (2o ∈ ω ∧ 1o ∈ ω)
297, 28pm3.2i 470 . . 3 (ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω))
30 eqid 2730 . . . 4 (ω Sat (2o𝑔1o)) = (ω Sat (2o𝑔1o))
3130sategoelfvb 35431 . . 3 ((ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ (ω Sat (2o𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))))
3229, 31mp1i 13 . 2 (𝑍 ∈ ω → (𝑆 ∈ (ω Sat (2o𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))))
3310, 27, 32mpbir2and 713 1 (𝑍 ∈ ω → 𝑆 ∈ (ω Sat (2o𝑔1o)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  Vcvv 3434  ifcif 4473  cmpt 5170  suc csuc 6304  wf 6473  cfv 6477  (class class class)co 7341  ωcom 7791  1oc1o 8373  2oc2o 8374  m cmap 8745  𝑔cgoe 35345   Sat csate 35350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-ac2 10346
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9824  df-ac 9999  df-goel 35352  df-gona 35353  df-goal 35354  df-sat 35355  df-sate 35356  df-fmla 35357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator