| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-sategoelelomsuc | Structured version Visualization version GIF version | ||
| Description: Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 𝑍 ∈ suc 𝑍 = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
| Ref | Expression |
|---|---|
| ex-sategoelelomsuc.s | ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)) |
| Ref | Expression |
|---|---|
| ex-sategoelelomsuc | ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω Sat∈ (2o∈𝑔1o))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . 6 ⊢ (𝑍 ∈ ω → 𝑍 ∈ ω) | |
| 2 | peano2 7826 | . . . . . 6 ⊢ (𝑍 ∈ ω → suc 𝑍 ∈ ω) | |
| 3 | 1, 2 | ifcld 4521 | . . . . 5 ⊢ (𝑍 ∈ ω → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 ∈ ω) → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω) |
| 5 | ex-sategoelelomsuc.s | . . . 4 ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)) | |
| 6 | 4, 5 | fmptd 7053 | . . 3 ⊢ (𝑍 ∈ ω → 𝑆:ω⟶ω) |
| 7 | omex 9539 | . . . . 5 ⊢ ω ∈ V | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → ω ∈ V) |
| 9 | 8, 8 | elmapd 8770 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆 ∈ (ω ↑m ω) ↔ 𝑆:ω⟶ω)) |
| 10 | 6, 9 | mpbird 257 | . 2 ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω ↑m ω)) |
| 11 | sucidg 6395 | . . 3 ⊢ (𝑍 ∈ ω → 𝑍 ∈ suc 𝑍) | |
| 12 | 5 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍))) |
| 13 | iftrue 4480 | . . . . 5 ⊢ (𝑥 = 2o → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍) | |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 = 2o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍) |
| 15 | 2onn 8563 | . . . . 5 ⊢ 2o ∈ ω | |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 2o ∈ ω) |
| 17 | 12, 14, 16, 1 | fvmptd 6942 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆‘2o) = 𝑍) |
| 18 | 1one2o 8567 | . . . . . . . 8 ⊢ 1o ≠ 2o | |
| 19 | 18 | neii 2930 | . . . . . . 7 ⊢ ¬ 1o = 2o |
| 20 | eqeq1 2735 | . . . . . . 7 ⊢ (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o)) | |
| 21 | 19, 20 | mtbiri 327 | . . . . . 6 ⊢ (𝑥 = 1o → ¬ 𝑥 = 2o) |
| 22 | 21 | iffalsed 4485 | . . . . 5 ⊢ (𝑥 = 1o → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍) |
| 23 | 22 | adantl 481 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 = 1o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍) |
| 24 | 1onn 8561 | . . . . 5 ⊢ 1o ∈ ω | |
| 25 | 24 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 1o ∈ ω) |
| 26 | 12, 23, 25, 2 | fvmptd 6942 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆‘1o) = suc 𝑍) |
| 27 | 11, 17, 26 | 3eltr4d 2846 | . 2 ⊢ (𝑍 ∈ ω → (𝑆‘2o) ∈ (𝑆‘1o)) |
| 28 | 15, 24 | pm3.2i 470 | . . . 4 ⊢ (2o ∈ ω ∧ 1o ∈ ω) |
| 29 | 7, 28 | pm3.2i 470 | . . 3 ⊢ (ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) |
| 30 | eqid 2731 | . . . 4 ⊢ (ω Sat∈ (2o∈𝑔1o)) = (ω Sat∈ (2o∈𝑔1o)) | |
| 31 | 30 | sategoelfvb 35470 | . . 3 ⊢ ((ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ (ω Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
| 32 | 29, 31 | mp1i 13 | . 2 ⊢ (𝑍 ∈ ω → (𝑆 ∈ (ω Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
| 33 | 10, 27, 32 | mpbir2and 713 | 1 ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω Sat∈ (2o∈𝑔1o))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ifcif 4474 ↦ cmpt 5174 suc csuc 6314 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 ωcom 7802 1oc1o 8384 2oc2o 8385 ↑m cmap 8756 ∈𝑔cgoe 35384 Sat∈ csate 35389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-ac2 10360 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9838 df-ac 10013 df-goel 35391 df-gona 35392 df-goal 35393 df-sat 35394 df-sate 35395 df-fmla 35396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |