Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ex-sategoelelomsuc Structured version   Visualization version   GIF version

Theorem ex-sategoelelomsuc 35413
Description: Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 𝑍 ∈ suc 𝑍 = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.)
Hypothesis
Ref Expression
ex-sategoelelomsuc.s 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍))
Assertion
Ref Expression
ex-sategoelelomsuc (𝑍 ∈ ω → 𝑆 ∈ (ω Sat (2o𝑔1o)))
Distinct variable group:   𝑥,𝑍
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem ex-sategoelelomsuc
StepHypRef Expression
1 id 22 . . . . . 6 (𝑍 ∈ ω → 𝑍 ∈ ω)
2 peano2 7866 . . . . . 6 (𝑍 ∈ ω → suc 𝑍 ∈ ω)
31, 2ifcld 4535 . . . . 5 (𝑍 ∈ ω → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω)
43adantr 480 . . . 4 ((𝑍 ∈ ω ∧ 𝑥 ∈ ω) → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω)
5 ex-sategoelelomsuc.s . . . 4 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍))
64, 5fmptd 7086 . . 3 (𝑍 ∈ ω → 𝑆:ω⟶ω)
7 omex 9596 . . . . 5 ω ∈ V
87a1i 11 . . . 4 (𝑍 ∈ ω → ω ∈ V)
98, 8elmapd 8813 . . 3 (𝑍 ∈ ω → (𝑆 ∈ (ω ↑m ω) ↔ 𝑆:ω⟶ω))
106, 9mpbird 257 . 2 (𝑍 ∈ ω → 𝑆 ∈ (ω ↑m ω))
11 sucidg 6415 . . 3 (𝑍 ∈ ω → 𝑍 ∈ suc 𝑍)
125a1i 11 . . . 4 (𝑍 ∈ ω → 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)))
13 iftrue 4494 . . . . 5 (𝑥 = 2o → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍)
1413adantl 481 . . . 4 ((𝑍 ∈ ω ∧ 𝑥 = 2o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍)
15 2onn 8606 . . . . 5 2o ∈ ω
1615a1i 11 . . . 4 (𝑍 ∈ ω → 2o ∈ ω)
1712, 14, 16, 1fvmptd 6975 . . 3 (𝑍 ∈ ω → (𝑆‘2o) = 𝑍)
18 1one2o 8610 . . . . . . . 8 1o ≠ 2o
1918neii 2927 . . . . . . 7 ¬ 1o = 2o
20 eqeq1 2733 . . . . . . 7 (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o))
2119, 20mtbiri 327 . . . . . 6 (𝑥 = 1o → ¬ 𝑥 = 2o)
2221iffalsed 4499 . . . . 5 (𝑥 = 1o → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍)
2322adantl 481 . . . 4 ((𝑍 ∈ ω ∧ 𝑥 = 1o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍)
24 1onn 8604 . . . . 5 1o ∈ ω
2524a1i 11 . . . 4 (𝑍 ∈ ω → 1o ∈ ω)
2612, 23, 25, 2fvmptd 6975 . . 3 (𝑍 ∈ ω → (𝑆‘1o) = suc 𝑍)
2711, 17, 263eltr4d 2843 . 2 (𝑍 ∈ ω → (𝑆‘2o) ∈ (𝑆‘1o))
2815, 24pm3.2i 470 . . . 4 (2o ∈ ω ∧ 1o ∈ ω)
297, 28pm3.2i 470 . . 3 (ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω))
30 eqid 2729 . . . 4 (ω Sat (2o𝑔1o)) = (ω Sat (2o𝑔1o))
3130sategoelfvb 35406 . . 3 ((ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ (ω Sat (2o𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))))
3229, 31mp1i 13 . 2 (𝑍 ∈ ω → (𝑆 ∈ (ω Sat (2o𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))))
3310, 27, 32mpbir2and 713 1 (𝑍 ∈ ω → 𝑆 ∈ (ω Sat (2o𝑔1o)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  ifcif 4488  cmpt 5188  suc csuc 6334  wf 6507  cfv 6511  (class class class)co 7387  ωcom 7842  1oc1o 8427  2oc2o 8428  m cmap 8799  𝑔cgoe 35320   Sat csate 35325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-ac 10069  df-goel 35327  df-gona 35328  df-goal 35329  df-sat 35330  df-sate 35331  df-fmla 35332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator