Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ex-sategoelelomsuc Structured version   Visualization version   GIF version

Theorem ex-sategoelelomsuc 35406
Description: Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 𝑍 ∈ suc 𝑍 = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.)
Hypothesis
Ref Expression
ex-sategoelelomsuc.s 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍))
Assertion
Ref Expression
ex-sategoelelomsuc (𝑍 ∈ ω → 𝑆 ∈ (ω Sat (2o𝑔1o)))
Distinct variable group:   𝑥,𝑍
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem ex-sategoelelomsuc
StepHypRef Expression
1 id 22 . . . . . 6 (𝑍 ∈ ω → 𝑍 ∈ ω)
2 peano2 7894 . . . . . 6 (𝑍 ∈ ω → suc 𝑍 ∈ ω)
31, 2ifcld 4552 . . . . 5 (𝑍 ∈ ω → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω)
43adantr 480 . . . 4 ((𝑍 ∈ ω ∧ 𝑥 ∈ ω) → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω)
5 ex-sategoelelomsuc.s . . . 4 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍))
64, 5fmptd 7114 . . 3 (𝑍 ∈ ω → 𝑆:ω⟶ω)
7 omex 9665 . . . . 5 ω ∈ V
87a1i 11 . . . 4 (𝑍 ∈ ω → ω ∈ V)
98, 8elmapd 8862 . . 3 (𝑍 ∈ ω → (𝑆 ∈ (ω ↑m ω) ↔ 𝑆:ω⟶ω))
106, 9mpbird 257 . 2 (𝑍 ∈ ω → 𝑆 ∈ (ω ↑m ω))
11 sucidg 6445 . . 3 (𝑍 ∈ ω → 𝑍 ∈ suc 𝑍)
125a1i 11 . . . 4 (𝑍 ∈ ω → 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)))
13 iftrue 4511 . . . . 5 (𝑥 = 2o → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍)
1413adantl 481 . . . 4 ((𝑍 ∈ ω ∧ 𝑥 = 2o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍)
15 2onn 8662 . . . . 5 2o ∈ ω
1615a1i 11 . . . 4 (𝑍 ∈ ω → 2o ∈ ω)
1712, 14, 16, 1fvmptd 7003 . . 3 (𝑍 ∈ ω → (𝑆‘2o) = 𝑍)
18 1one2o 8666 . . . . . . . 8 1o ≠ 2o
1918neii 2933 . . . . . . 7 ¬ 1o = 2o
20 eqeq1 2738 . . . . . . 7 (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o))
2119, 20mtbiri 327 . . . . . 6 (𝑥 = 1o → ¬ 𝑥 = 2o)
2221iffalsed 4516 . . . . 5 (𝑥 = 1o → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍)
2322adantl 481 . . . 4 ((𝑍 ∈ ω ∧ 𝑥 = 1o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍)
24 1onn 8660 . . . . 5 1o ∈ ω
2524a1i 11 . . . 4 (𝑍 ∈ ω → 1o ∈ ω)
2612, 23, 25, 2fvmptd 7003 . . 3 (𝑍 ∈ ω → (𝑆‘1o) = suc 𝑍)
2711, 17, 263eltr4d 2848 . 2 (𝑍 ∈ ω → (𝑆‘2o) ∈ (𝑆‘1o))
2815, 24pm3.2i 470 . . . 4 (2o ∈ ω ∧ 1o ∈ ω)
297, 28pm3.2i 470 . . 3 (ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω))
30 eqid 2734 . . . 4 (ω Sat (2o𝑔1o)) = (ω Sat (2o𝑔1o))
3130sategoelfvb 35399 . . 3 ((ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ (ω Sat (2o𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))))
3229, 31mp1i 13 . 2 (𝑍 ∈ ω → (𝑆 ∈ (ω Sat (2o𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))))
3310, 27, 32mpbir2and 713 1 (𝑍 ∈ ω → 𝑆 ∈ (ω Sat (2o𝑔1o)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  ifcif 4505  cmpt 5205  suc csuc 6365  wf 6537  cfv 6541  (class class class)co 7413  ωcom 7869  1oc1o 8481  2oc2o 8482  m cmap 8848  𝑔cgoe 35313   Sat csate 35318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-ac2 10485
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-card 9961  df-ac 10138  df-goel 35320  df-gona 35321  df-goal 35322  df-sat 35323  df-sate 35324  df-fmla 35325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator