Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ex-sategoelelomsuc Structured version   Visualization version   GIF version

Theorem ex-sategoelelomsuc 35394
Description: Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 𝑍 ∈ suc 𝑍 = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.)
Hypothesis
Ref Expression
ex-sategoelelomsuc.s 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍))
Assertion
Ref Expression
ex-sategoelelomsuc (𝑍 ∈ ω → 𝑆 ∈ (ω Sat (2o𝑔1o)))
Distinct variable group:   𝑥,𝑍
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem ex-sategoelelomsuc
StepHypRef Expression
1 id 22 . . . . . 6 (𝑍 ∈ ω → 𝑍 ∈ ω)
2 peano2 7929 . . . . . 6 (𝑍 ∈ ω → suc 𝑍 ∈ ω)
31, 2ifcld 4594 . . . . 5 (𝑍 ∈ ω → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω)
43adantr 480 . . . 4 ((𝑍 ∈ ω ∧ 𝑥 ∈ ω) → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω)
5 ex-sategoelelomsuc.s . . . 4 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍))
64, 5fmptd 7148 . . 3 (𝑍 ∈ ω → 𝑆:ω⟶ω)
7 omex 9712 . . . . 5 ω ∈ V
87a1i 11 . . . 4 (𝑍 ∈ ω → ω ∈ V)
98, 8elmapd 8898 . . 3 (𝑍 ∈ ω → (𝑆 ∈ (ω ↑m ω) ↔ 𝑆:ω⟶ω))
106, 9mpbird 257 . 2 (𝑍 ∈ ω → 𝑆 ∈ (ω ↑m ω))
11 sucidg 6476 . . 3 (𝑍 ∈ ω → 𝑍 ∈ suc 𝑍)
125a1i 11 . . . 4 (𝑍 ∈ ω → 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)))
13 iftrue 4554 . . . . 5 (𝑥 = 2o → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍)
1413adantl 481 . . . 4 ((𝑍 ∈ ω ∧ 𝑥 = 2o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍)
15 2onn 8698 . . . . 5 2o ∈ ω
1615a1i 11 . . . 4 (𝑍 ∈ ω → 2o ∈ ω)
1712, 14, 16, 1fvmptd 7036 . . 3 (𝑍 ∈ ω → (𝑆‘2o) = 𝑍)
18 1one2o 8702 . . . . . . . 8 1o ≠ 2o
1918neii 2948 . . . . . . 7 ¬ 1o = 2o
20 eqeq1 2744 . . . . . . 7 (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o))
2119, 20mtbiri 327 . . . . . 6 (𝑥 = 1o → ¬ 𝑥 = 2o)
2221iffalsed 4559 . . . . 5 (𝑥 = 1o → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍)
2322adantl 481 . . . 4 ((𝑍 ∈ ω ∧ 𝑥 = 1o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍)
24 1onn 8696 . . . . 5 1o ∈ ω
2524a1i 11 . . . 4 (𝑍 ∈ ω → 1o ∈ ω)
2612, 23, 25, 2fvmptd 7036 . . 3 (𝑍 ∈ ω → (𝑆‘1o) = suc 𝑍)
2711, 17, 263eltr4d 2859 . 2 (𝑍 ∈ ω → (𝑆‘2o) ∈ (𝑆‘1o))
2815, 24pm3.2i 470 . . . 4 (2o ∈ ω ∧ 1o ∈ ω)
297, 28pm3.2i 470 . . 3 (ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω))
30 eqid 2740 . . . 4 (ω Sat (2o𝑔1o)) = (ω Sat (2o𝑔1o))
3130sategoelfvb 35387 . . 3 ((ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ (ω Sat (2o𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))))
3229, 31mp1i 13 . 2 (𝑍 ∈ ω → (𝑆 ∈ (ω Sat (2o𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))))
3310, 27, 32mpbir2and 712 1 (𝑍 ∈ ω → 𝑆 ∈ (ω Sat (2o𝑔1o)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  ifcif 4548  cmpt 5249  suc csuc 6397  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903  1oc1o 8515  2oc2o 8516  m cmap 8884  𝑔cgoe 35301   Sat csate 35306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-ac 10185  df-goel 35308  df-gona 35309  df-goal 35310  df-sat 35311  df-sate 35312  df-fmla 35313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator