![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-sategoelelomsuc | Structured version Visualization version GIF version |
Description: Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 𝑍 ∈ suc 𝑍 = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
Ref | Expression |
---|---|
ex-sategoelelomsuc.s | ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)) |
Ref | Expression |
---|---|
ex-sategoelelomsuc | ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω Sat∈ (2o∈𝑔1o))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . 6 ⊢ (𝑍 ∈ ω → 𝑍 ∈ ω) | |
2 | peano2 7897 | . . . . . 6 ⊢ (𝑍 ∈ ω → suc 𝑍 ∈ ω) | |
3 | 1, 2 | ifcld 4576 | . . . . 5 ⊢ (𝑍 ∈ ω → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω) |
4 | 3 | adantr 479 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 ∈ ω) → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω) |
5 | ex-sategoelelomsuc.s | . . . 4 ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)) | |
6 | 4, 5 | fmptd 7123 | . . 3 ⊢ (𝑍 ∈ ω → 𝑆:ω⟶ω) |
7 | omex 9668 | . . . . 5 ⊢ ω ∈ V | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → ω ∈ V) |
9 | 8, 8 | elmapd 8859 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆 ∈ (ω ↑m ω) ↔ 𝑆:ω⟶ω)) |
10 | 6, 9 | mpbird 256 | . 2 ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω ↑m ω)) |
11 | sucidg 6452 | . . 3 ⊢ (𝑍 ∈ ω → 𝑍 ∈ suc 𝑍) | |
12 | 5 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍))) |
13 | iftrue 4536 | . . . . 5 ⊢ (𝑥 = 2o → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍) | |
14 | 13 | adantl 480 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 = 2o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍) |
15 | 2onn 8663 | . . . . 5 ⊢ 2o ∈ ω | |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 2o ∈ ω) |
17 | 12, 14, 16, 1 | fvmptd 7011 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆‘2o) = 𝑍) |
18 | 1one2o 8667 | . . . . . . . 8 ⊢ 1o ≠ 2o | |
19 | 18 | neii 2931 | . . . . . . 7 ⊢ ¬ 1o = 2o |
20 | eqeq1 2729 | . . . . . . 7 ⊢ (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o)) | |
21 | 19, 20 | mtbiri 326 | . . . . . 6 ⊢ (𝑥 = 1o → ¬ 𝑥 = 2o) |
22 | 21 | iffalsed 4541 | . . . . 5 ⊢ (𝑥 = 1o → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍) |
23 | 22 | adantl 480 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 = 1o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍) |
24 | 1onn 8661 | . . . . 5 ⊢ 1o ∈ ω | |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 1o ∈ ω) |
26 | 12, 23, 25, 2 | fvmptd 7011 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆‘1o) = suc 𝑍) |
27 | 11, 17, 26 | 3eltr4d 2840 | . 2 ⊢ (𝑍 ∈ ω → (𝑆‘2o) ∈ (𝑆‘1o)) |
28 | 15, 24 | pm3.2i 469 | . . . 4 ⊢ (2o ∈ ω ∧ 1o ∈ ω) |
29 | 7, 28 | pm3.2i 469 | . . 3 ⊢ (ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) |
30 | eqid 2725 | . . . 4 ⊢ (ω Sat∈ (2o∈𝑔1o)) = (ω Sat∈ (2o∈𝑔1o)) | |
31 | 30 | sategoelfvb 35157 | . . 3 ⊢ ((ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ (ω Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
32 | 29, 31 | mp1i 13 | . 2 ⊢ (𝑍 ∈ ω → (𝑆 ∈ (ω Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
33 | 10, 27, 32 | mpbir2and 711 | 1 ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω Sat∈ (2o∈𝑔1o))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ifcif 4530 ↦ cmpt 5232 suc csuc 6373 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ωcom 7871 1oc1o 8480 2oc2o 8481 ↑m cmap 8845 ∈𝑔cgoe 35071 Sat∈ csate 35076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-ac2 10488 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9964 df-ac 10141 df-goel 35078 df-gona 35079 df-goal 35080 df-sat 35081 df-sate 35082 df-fmla 35083 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |