Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-sategoelelomsuc | Structured version Visualization version GIF version |
Description: Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 𝑍 ∈ suc 𝑍 = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
Ref | Expression |
---|---|
ex-sategoelelomsuc.s | ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)) |
Ref | Expression |
---|---|
ex-sategoelelomsuc | ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω Sat∈ (2o∈𝑔1o))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . 6 ⊢ (𝑍 ∈ ω → 𝑍 ∈ ω) | |
2 | peano2 7711 | . . . . . 6 ⊢ (𝑍 ∈ ω → suc 𝑍 ∈ ω) | |
3 | 1, 2 | ifcld 4502 | . . . . 5 ⊢ (𝑍 ∈ ω → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω) |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 ∈ ω) → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω) |
5 | ex-sategoelelomsuc.s | . . . 4 ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)) | |
6 | 4, 5 | fmptd 6970 | . . 3 ⊢ (𝑍 ∈ ω → 𝑆:ω⟶ω) |
7 | omex 9331 | . . . . 5 ⊢ ω ∈ V | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → ω ∈ V) |
9 | 8, 8 | elmapd 8587 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆 ∈ (ω ↑m ω) ↔ 𝑆:ω⟶ω)) |
10 | 6, 9 | mpbird 256 | . 2 ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω ↑m ω)) |
11 | sucidg 6329 | . . 3 ⊢ (𝑍 ∈ ω → 𝑍 ∈ suc 𝑍) | |
12 | 5 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍))) |
13 | iftrue 4462 | . . . . 5 ⊢ (𝑥 = 2o → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍) | |
14 | 13 | adantl 481 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 = 2o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍) |
15 | 2onn 8433 | . . . . 5 ⊢ 2o ∈ ω | |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 2o ∈ ω) |
17 | 12, 14, 16, 1 | fvmptd 6864 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆‘2o) = 𝑍) |
18 | 1one2o 8436 | . . . . . . . 8 ⊢ 1o ≠ 2o | |
19 | 18 | neii 2944 | . . . . . . 7 ⊢ ¬ 1o = 2o |
20 | eqeq1 2742 | . . . . . . 7 ⊢ (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o)) | |
21 | 19, 20 | mtbiri 326 | . . . . . 6 ⊢ (𝑥 = 1o → ¬ 𝑥 = 2o) |
22 | 21 | iffalsed 4467 | . . . . 5 ⊢ (𝑥 = 1o → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍) |
23 | 22 | adantl 481 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 = 1o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍) |
24 | 1onn 8432 | . . . . 5 ⊢ 1o ∈ ω | |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 1o ∈ ω) |
26 | 12, 23, 25, 2 | fvmptd 6864 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆‘1o) = suc 𝑍) |
27 | 11, 17, 26 | 3eltr4d 2854 | . 2 ⊢ (𝑍 ∈ ω → (𝑆‘2o) ∈ (𝑆‘1o)) |
28 | 15, 24 | pm3.2i 470 | . . . 4 ⊢ (2o ∈ ω ∧ 1o ∈ ω) |
29 | 7, 28 | pm3.2i 470 | . . 3 ⊢ (ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) |
30 | eqid 2738 | . . . 4 ⊢ (ω Sat∈ (2o∈𝑔1o)) = (ω Sat∈ (2o∈𝑔1o)) | |
31 | 30 | sategoelfvb 33281 | . . 3 ⊢ ((ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ (ω Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
32 | 29, 31 | mp1i 13 | . 2 ⊢ (𝑍 ∈ ω → (𝑆 ∈ (ω Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
33 | 10, 27, 32 | mpbir2and 709 | 1 ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω Sat∈ (2o∈𝑔1o))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ifcif 4456 ↦ cmpt 5153 suc csuc 6253 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ωcom 7687 1oc1o 8260 2oc2o 8261 ↑m cmap 8573 ∈𝑔cgoe 33195 Sat∈ csate 33200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-ac2 10150 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-card 9628 df-ac 9803 df-goel 33202 df-gona 33203 df-goal 33204 df-sat 33205 df-sate 33206 df-fmla 33207 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |