| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-sategoelelomsuc | Structured version Visualization version GIF version | ||
| Description: Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 𝑍 ∈ suc 𝑍 = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
| Ref | Expression |
|---|---|
| ex-sategoelelomsuc.s | ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)) |
| Ref | Expression |
|---|---|
| ex-sategoelelomsuc | ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω Sat∈ (2o∈𝑔1o))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . 6 ⊢ (𝑍 ∈ ω → 𝑍 ∈ ω) | |
| 2 | peano2 7846 | . . . . . 6 ⊢ (𝑍 ∈ ω → suc 𝑍 ∈ ω) | |
| 3 | 1, 2 | ifcld 4531 | . . . . 5 ⊢ (𝑍 ∈ ω → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 ∈ ω) → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω) |
| 5 | ex-sategoelelomsuc.s | . . . 4 ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)) | |
| 6 | 4, 5 | fmptd 7068 | . . 3 ⊢ (𝑍 ∈ ω → 𝑆:ω⟶ω) |
| 7 | omex 9572 | . . . . 5 ⊢ ω ∈ V | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → ω ∈ V) |
| 9 | 8, 8 | elmapd 8790 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆 ∈ (ω ↑m ω) ↔ 𝑆:ω⟶ω)) |
| 10 | 6, 9 | mpbird 257 | . 2 ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω ↑m ω)) |
| 11 | sucidg 6403 | . . 3 ⊢ (𝑍 ∈ ω → 𝑍 ∈ suc 𝑍) | |
| 12 | 5 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍))) |
| 13 | iftrue 4490 | . . . . 5 ⊢ (𝑥 = 2o → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍) | |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 = 2o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍) |
| 15 | 2onn 8583 | . . . . 5 ⊢ 2o ∈ ω | |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 2o ∈ ω) |
| 17 | 12, 14, 16, 1 | fvmptd 6957 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆‘2o) = 𝑍) |
| 18 | 1one2o 8587 | . . . . . . . 8 ⊢ 1o ≠ 2o | |
| 19 | 18 | neii 2927 | . . . . . . 7 ⊢ ¬ 1o = 2o |
| 20 | eqeq1 2733 | . . . . . . 7 ⊢ (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o)) | |
| 21 | 19, 20 | mtbiri 327 | . . . . . 6 ⊢ (𝑥 = 1o → ¬ 𝑥 = 2o) |
| 22 | 21 | iffalsed 4495 | . . . . 5 ⊢ (𝑥 = 1o → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍) |
| 23 | 22 | adantl 481 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 = 1o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍) |
| 24 | 1onn 8581 | . . . . 5 ⊢ 1o ∈ ω | |
| 25 | 24 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 1o ∈ ω) |
| 26 | 12, 23, 25, 2 | fvmptd 6957 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆‘1o) = suc 𝑍) |
| 27 | 11, 17, 26 | 3eltr4d 2843 | . 2 ⊢ (𝑍 ∈ ω → (𝑆‘2o) ∈ (𝑆‘1o)) |
| 28 | 15, 24 | pm3.2i 470 | . . . 4 ⊢ (2o ∈ ω ∧ 1o ∈ ω) |
| 29 | 7, 28 | pm3.2i 470 | . . 3 ⊢ (ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) |
| 30 | eqid 2729 | . . . 4 ⊢ (ω Sat∈ (2o∈𝑔1o)) = (ω Sat∈ (2o∈𝑔1o)) | |
| 31 | 30 | sategoelfvb 35399 | . . 3 ⊢ ((ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ (ω Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
| 32 | 29, 31 | mp1i 13 | . 2 ⊢ (𝑍 ∈ ω → (𝑆 ∈ (ω Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
| 33 | 10, 27, 32 | mpbir2and 713 | 1 ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω Sat∈ (2o∈𝑔1o))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ifcif 4484 ↦ cmpt 5183 suc csuc 6322 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ωcom 7822 1oc1o 8404 2oc2o 8405 ↑m cmap 8776 ∈𝑔cgoe 35313 Sat∈ csate 35318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-ac2 10392 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-ac 10045 df-goel 35320 df-gona 35321 df-goal 35322 df-sat 35323 df-sate 35324 df-fmla 35325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |