Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-sategoelelomsuc | Structured version Visualization version GIF version |
Description: Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 𝑍 ∈ suc 𝑍 = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
Ref | Expression |
---|---|
ex-sategoelelomsuc.s | ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)) |
Ref | Expression |
---|---|
ex-sategoelelomsuc | ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω Sat∈ (2o∈𝑔1o))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . 6 ⊢ (𝑍 ∈ ω → 𝑍 ∈ ω) | |
2 | peano2 7737 | . . . . . 6 ⊢ (𝑍 ∈ ω → suc 𝑍 ∈ ω) | |
3 | 1, 2 | ifcld 4505 | . . . . 5 ⊢ (𝑍 ∈ ω → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω) |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 ∈ ω) → if(𝑥 = 2o, 𝑍, suc 𝑍) ∈ ω) |
5 | ex-sategoelelomsuc.s | . . . 4 ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)) | |
6 | 4, 5 | fmptd 6988 | . . 3 ⊢ (𝑍 ∈ ω → 𝑆:ω⟶ω) |
7 | omex 9401 | . . . . 5 ⊢ ω ∈ V | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → ω ∈ V) |
9 | 8, 8 | elmapd 8629 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆 ∈ (ω ↑m ω) ↔ 𝑆:ω⟶ω)) |
10 | 6, 9 | mpbird 256 | . 2 ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω ↑m ω)) |
11 | sucidg 6344 | . . 3 ⊢ (𝑍 ∈ ω → 𝑍 ∈ suc 𝑍) | |
12 | 5 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍))) |
13 | iftrue 4465 | . . . . 5 ⊢ (𝑥 = 2o → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍) | |
14 | 13 | adantl 482 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 = 2o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = 𝑍) |
15 | 2onn 8472 | . . . . 5 ⊢ 2o ∈ ω | |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 2o ∈ ω) |
17 | 12, 14, 16, 1 | fvmptd 6882 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆‘2o) = 𝑍) |
18 | 1one2o 8476 | . . . . . . . 8 ⊢ 1o ≠ 2o | |
19 | 18 | neii 2945 | . . . . . . 7 ⊢ ¬ 1o = 2o |
20 | eqeq1 2742 | . . . . . . 7 ⊢ (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o)) | |
21 | 19, 20 | mtbiri 327 | . . . . . 6 ⊢ (𝑥 = 1o → ¬ 𝑥 = 2o) |
22 | 21 | iffalsed 4470 | . . . . 5 ⊢ (𝑥 = 1o → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍) |
23 | 22 | adantl 482 | . . . 4 ⊢ ((𝑍 ∈ ω ∧ 𝑥 = 1o) → if(𝑥 = 2o, 𝑍, suc 𝑍) = suc 𝑍) |
24 | 1onn 8470 | . . . . 5 ⊢ 1o ∈ ω | |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝑍 ∈ ω → 1o ∈ ω) |
26 | 12, 23, 25, 2 | fvmptd 6882 | . . 3 ⊢ (𝑍 ∈ ω → (𝑆‘1o) = suc 𝑍) |
27 | 11, 17, 26 | 3eltr4d 2854 | . 2 ⊢ (𝑍 ∈ ω → (𝑆‘2o) ∈ (𝑆‘1o)) |
28 | 15, 24 | pm3.2i 471 | . . . 4 ⊢ (2o ∈ ω ∧ 1o ∈ ω) |
29 | 7, 28 | pm3.2i 471 | . . 3 ⊢ (ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) |
30 | eqid 2738 | . . . 4 ⊢ (ω Sat∈ (2o∈𝑔1o)) = (ω Sat∈ (2o∈𝑔1o)) | |
31 | 30 | sategoelfvb 33381 | . . 3 ⊢ ((ω ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ (ω Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
32 | 29, 31 | mp1i 13 | . 2 ⊢ (𝑍 ∈ ω → (𝑆 ∈ (ω Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ (ω ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
33 | 10, 27, 32 | mpbir2and 710 | 1 ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω Sat∈ (2o∈𝑔1o))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ifcif 4459 ↦ cmpt 5157 suc csuc 6268 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ωcom 7712 1oc1o 8290 2oc2o 8291 ↑m cmap 8615 ∈𝑔cgoe 33295 Sat∈ csate 33300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-ac 9872 df-goel 33302 df-gona 33303 df-goal 33304 df-sat 33305 df-sate 33306 df-fmla 33307 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |