MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlelb Structured version   Visualization version   GIF version

Theorem 2idlelb 20865
Description: Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl 20871. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.)
Hypotheses
Ref Expression
2idlel.i 𝐼 = (LIdealβ€˜π‘…)
2idlel.o 𝑂 = (opprβ€˜π‘…)
2idlel.j 𝐽 = (LIdealβ€˜π‘‚)
2idlel.t 𝑇 = (2Idealβ€˜π‘…)
Assertion
Ref Expression
2idlelb (π‘ˆ ∈ 𝑇 ↔ (π‘ˆ ∈ 𝐼 ∧ π‘ˆ ∈ 𝐽))

Proof of Theorem 2idlelb
StepHypRef Expression
1 2idlel.i . . 3 𝐼 = (LIdealβ€˜π‘…)
2 2idlel.o . . 3 𝑂 = (opprβ€˜π‘…)
3 2idlel.j . . 3 𝐽 = (LIdealβ€˜π‘‚)
4 2idlel.t . . 3 𝑇 = (2Idealβ€˜π‘…)
51, 2, 3, 42idlval 20858 . 2 𝑇 = (𝐼 ∩ 𝐽)
65elin2 4198 1 (π‘ˆ ∈ 𝑇 ↔ (π‘ˆ ∈ 𝐼 ∧ π‘ˆ ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  β€˜cfv 6544  opprcoppr 20149  LIdealclidl 20783  2Idealc2idl 20856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-2idl 20857
This theorem is referenced by:  2idlelbas  20870  2idlcpbl  20871  df2idl2rng  46759  rng2idlsubgsubrng  46763  2idlcpblrng  46766
  Copyright terms: Public domain W3C validator