MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlelb Structured version   Visualization version   GIF version

Theorem 2idlelb 21286
Description: Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl 21305. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.)
Hypotheses
Ref Expression
2idlel.i 𝐼 = (LIdeal‘𝑅)
2idlel.o 𝑂 = (oppr𝑅)
2idlel.j 𝐽 = (LIdeal‘𝑂)
2idlel.t 𝑇 = (2Ideal‘𝑅)
Assertion
Ref Expression
2idlelb (𝑈𝑇 ↔ (𝑈𝐼𝑈𝐽))

Proof of Theorem 2idlelb
StepHypRef Expression
1 2idlel.i . . 3 𝐼 = (LIdeal‘𝑅)
2 2idlel.o . . 3 𝑂 = (oppr𝑅)
3 2idlel.j . . 3 𝐽 = (LIdeal‘𝑂)
4 2idlel.t . . 3 𝑇 = (2Ideal‘𝑅)
51, 2, 3, 42idlval 21284 . 2 𝑇 = (𝐼𝐽)
65elin2 4226 1 (𝑈𝑇 ↔ (𝑈𝐼𝑈𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  cfv 6573  opprcoppr 20359  LIdealclidl 21239  2Idealc2idl 21282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-2idl 21283
This theorem is referenced by:  df2idl2rng  21289  2idlelbas  21297  rng2idlsubgsubrng  21301  2idlcpblrng  21304  2idlcpbl  21305
  Copyright terms: Public domain W3C validator