![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2idlelb | Structured version Visualization version GIF version |
Description: Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl 20871. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) |
Ref | Expression |
---|---|
2idlel.i | β’ πΌ = (LIdealβπ ) |
2idlel.o | β’ π = (opprβπ ) |
2idlel.j | β’ π½ = (LIdealβπ) |
2idlel.t | β’ π = (2Idealβπ ) |
Ref | Expression |
---|---|
2idlelb | β’ (π β π β (π β πΌ β§ π β π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2idlel.i | . . 3 β’ πΌ = (LIdealβπ ) | |
2 | 2idlel.o | . . 3 β’ π = (opprβπ ) | |
3 | 2idlel.j | . . 3 β’ π½ = (LIdealβπ) | |
4 | 2idlel.t | . . 3 β’ π = (2Idealβπ ) | |
5 | 1, 2, 3, 4 | 2idlval 20858 | . 2 β’ π = (πΌ β© π½) |
6 | 5 | elin2 4198 | 1 β’ (π β π β (π β πΌ β§ π β π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βcfv 6544 opprcoppr 20149 LIdealclidl 20783 2Idealc2idl 20856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-2idl 20857 |
This theorem is referenced by: 2idlelbas 20870 2idlcpbl 20871 df2idl2rng 46759 rng2idlsubgsubrng 46763 2idlcpblrng 46766 |
Copyright terms: Public domain | W3C validator |