| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2idlelb | Structured version Visualization version GIF version | ||
| Description: Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl 21202. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) |
| Ref | Expression |
|---|---|
| 2idlel.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
| 2idlel.o | ⊢ 𝑂 = (oppr‘𝑅) |
| 2idlel.j | ⊢ 𝐽 = (LIdeal‘𝑂) |
| 2idlel.t | ⊢ 𝑇 = (2Ideal‘𝑅) |
| Ref | Expression |
|---|---|
| 2idlelb | ⊢ (𝑈 ∈ 𝑇 ↔ (𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlel.i | . . 3 ⊢ 𝐼 = (LIdeal‘𝑅) | |
| 2 | 2idlel.o | . . 3 ⊢ 𝑂 = (oppr‘𝑅) | |
| 3 | 2idlel.j | . . 3 ⊢ 𝐽 = (LIdeal‘𝑂) | |
| 4 | 2idlel.t | . . 3 ⊢ 𝑇 = (2Ideal‘𝑅) | |
| 5 | 1, 2, 3, 4 | 2idlval 21181 | . 2 ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
| 6 | 5 | elin2 4151 | 1 ⊢ (𝑈 ∈ 𝑇 ↔ (𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 opprcoppr 20247 LIdealclidl 21136 2Idealc2idl 21179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-2idl 21180 |
| This theorem is referenced by: df2idl2rng 21186 2idlelbas 21194 rng2idlsubgsubrng 21198 2idlcpblrng 21201 2idlcpbl 21202 |
| Copyright terms: Public domain | W3C validator |