![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2idlelb | Structured version Visualization version GIF version |
Description: Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl 21300. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) |
Ref | Expression |
---|---|
2idlel.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
2idlel.o | ⊢ 𝑂 = (oppr‘𝑅) |
2idlel.j | ⊢ 𝐽 = (LIdeal‘𝑂) |
2idlel.t | ⊢ 𝑇 = (2Ideal‘𝑅) |
Ref | Expression |
---|---|
2idlelb | ⊢ (𝑈 ∈ 𝑇 ↔ (𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2idlel.i | . . 3 ⊢ 𝐼 = (LIdeal‘𝑅) | |
2 | 2idlel.o | . . 3 ⊢ 𝑂 = (oppr‘𝑅) | |
3 | 2idlel.j | . . 3 ⊢ 𝐽 = (LIdeal‘𝑂) | |
4 | 2idlel.t | . . 3 ⊢ 𝑇 = (2Ideal‘𝑅) | |
5 | 1, 2, 3, 4 | 2idlval 21279 | . 2 ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
6 | 5 | elin2 4213 | 1 ⊢ (𝑈 ∈ 𝑇 ↔ (𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 opprcoppr 20350 LIdealclidl 21234 2Idealc2idl 21277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-2idl 21278 |
This theorem is referenced by: df2idl2rng 21284 2idlelbas 21292 rng2idlsubgsubrng 21296 2idlcpblrng 21299 2idlcpbl 21300 |
Copyright terms: Public domain | W3C validator |