MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlelb Structured version   Visualization version   GIF version

Theorem 2idlelb 21183
Description: Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl 21202. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.)
Hypotheses
Ref Expression
2idlel.i 𝐼 = (LIdeal‘𝑅)
2idlel.o 𝑂 = (oppr𝑅)
2idlel.j 𝐽 = (LIdeal‘𝑂)
2idlel.t 𝑇 = (2Ideal‘𝑅)
Assertion
Ref Expression
2idlelb (𝑈𝑇 ↔ (𝑈𝐼𝑈𝐽))

Proof of Theorem 2idlelb
StepHypRef Expression
1 2idlel.i . . 3 𝐼 = (LIdeal‘𝑅)
2 2idlel.o . . 3 𝑂 = (oppr𝑅)
3 2idlel.j . . 3 𝐽 = (LIdeal‘𝑂)
4 2idlel.t . . 3 𝑇 = (2Ideal‘𝑅)
51, 2, 3, 42idlval 21181 . 2 𝑇 = (𝐼𝐽)
65elin2 4151 1 (𝑈𝑇 ↔ (𝑈𝐼𝑈𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2110  cfv 6477  opprcoppr 20247  LIdealclidl 21136  2Idealc2idl 21179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-2idl 21180
This theorem is referenced by:  df2idl2rng  21186  2idlelbas  21194  rng2idlsubgsubrng  21198  2idlcpblrng  21201  2idlcpbl  21202
  Copyright terms: Public domain W3C validator