| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2idlelb | Structured version Visualization version GIF version | ||
| Description: Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl 21215. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) |
| Ref | Expression |
|---|---|
| 2idlel.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
| 2idlel.o | ⊢ 𝑂 = (oppr‘𝑅) |
| 2idlel.j | ⊢ 𝐽 = (LIdeal‘𝑂) |
| 2idlel.t | ⊢ 𝑇 = (2Ideal‘𝑅) |
| Ref | Expression |
|---|---|
| 2idlelb | ⊢ (𝑈 ∈ 𝑇 ↔ (𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlel.i | . . 3 ⊢ 𝐼 = (LIdeal‘𝑅) | |
| 2 | 2idlel.o | . . 3 ⊢ 𝑂 = (oppr‘𝑅) | |
| 3 | 2idlel.j | . . 3 ⊢ 𝐽 = (LIdeal‘𝑂) | |
| 4 | 2idlel.t | . . 3 ⊢ 𝑇 = (2Ideal‘𝑅) | |
| 5 | 1, 2, 3, 4 | 2idlval 21194 | . 2 ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
| 6 | 5 | elin2 4152 | 1 ⊢ (𝑈 ∈ 𝑇 ↔ (𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6487 opprcoppr 20260 LIdealclidl 21149 2Idealc2idl 21192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6443 df-fun 6489 df-fv 6495 df-2idl 21193 |
| This theorem is referenced by: df2idl2rng 21199 2idlelbas 21207 rng2idlsubgsubrng 21211 2idlcpblrng 21214 2idlcpbl 21215 |
| Copyright terms: Public domain | W3C validator |