MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlelb Structured version   Visualization version   GIF version

Theorem 2idlelb 21281
Description: Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl 21300. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.)
Hypotheses
Ref Expression
2idlel.i 𝐼 = (LIdeal‘𝑅)
2idlel.o 𝑂 = (oppr𝑅)
2idlel.j 𝐽 = (LIdeal‘𝑂)
2idlel.t 𝑇 = (2Ideal‘𝑅)
Assertion
Ref Expression
2idlelb (𝑈𝑇 ↔ (𝑈𝐼𝑈𝐽))

Proof of Theorem 2idlelb
StepHypRef Expression
1 2idlel.i . . 3 𝐼 = (LIdeal‘𝑅)
2 2idlel.o . . 3 𝑂 = (oppr𝑅)
3 2idlel.j . . 3 𝐽 = (LIdeal‘𝑂)
4 2idlel.t . . 3 𝑇 = (2Ideal‘𝑅)
51, 2, 3, 42idlval 21279 . 2 𝑇 = (𝐼𝐽)
65elin2 4213 1 (𝑈𝑇 ↔ (𝑈𝐼𝑈𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  cfv 6563  opprcoppr 20350  LIdealclidl 21234  2Idealc2idl 21277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-2idl 21278
This theorem is referenced by:  df2idl2rng  21284  2idlelbas  21292  rng2idlsubgsubrng  21296  2idlcpblrng  21299  2idlcpbl  21300
  Copyright terms: Public domain W3C validator