MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlelb Structured version   Visualization version   GIF version

Theorem 2idlelb 21219
Description: Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl 21238. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.)
Hypotheses
Ref Expression
2idlel.i 𝐼 = (LIdeal‘𝑅)
2idlel.o 𝑂 = (oppr𝑅)
2idlel.j 𝐽 = (LIdeal‘𝑂)
2idlel.t 𝑇 = (2Ideal‘𝑅)
Assertion
Ref Expression
2idlelb (𝑈𝑇 ↔ (𝑈𝐼𝑈𝐽))

Proof of Theorem 2idlelb
StepHypRef Expression
1 2idlel.i . . 3 𝐼 = (LIdeal‘𝑅)
2 2idlel.o . . 3 𝑂 = (oppr𝑅)
3 2idlel.j . . 3 𝐽 = (LIdeal‘𝑂)
4 2idlel.t . . 3 𝑇 = (2Ideal‘𝑅)
51, 2, 3, 42idlval 21217 . 2 𝑇 = (𝐼𝐽)
65elin2 4183 1 (𝑈𝑇 ↔ (𝑈𝐼𝑈𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6536  opprcoppr 20301  LIdealclidl 21172  2Idealc2idl 21215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-2idl 21216
This theorem is referenced by:  df2idl2rng  21222  2idlelbas  21230  rng2idlsubgsubrng  21234  2idlcpblrng  21237  2idlcpbl  21238
  Copyright terms: Public domain W3C validator