![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2idlelb | Structured version Visualization version GIF version |
Description: Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl 21179. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) |
Ref | Expression |
---|---|
2idlel.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
2idlel.o | ⊢ 𝑂 = (oppr‘𝑅) |
2idlel.j | ⊢ 𝐽 = (LIdeal‘𝑂) |
2idlel.t | ⊢ 𝑇 = (2Ideal‘𝑅) |
Ref | Expression |
---|---|
2idlelb | ⊢ (𝑈 ∈ 𝑇 ↔ (𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2idlel.i | . . 3 ⊢ 𝐼 = (LIdeal‘𝑅) | |
2 | 2idlel.o | . . 3 ⊢ 𝑂 = (oppr‘𝑅) | |
3 | 2idlel.j | . . 3 ⊢ 𝐽 = (LIdeal‘𝑂) | |
4 | 2idlel.t | . . 3 ⊢ 𝑇 = (2Ideal‘𝑅) | |
5 | 1, 2, 3, 4 | 2idlval 21158 | . 2 ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
6 | 5 | elin2 4195 | 1 ⊢ (𝑈 ∈ 𝑇 ↔ (𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 opprcoppr 20284 LIdealclidl 21114 2Idealc2idl 21156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-2idl 21157 |
This theorem is referenced by: df2idl2rng 21163 2idlelbas 21171 rng2idlsubgsubrng 21175 2idlcpblrng 21178 2idlcpbl 21179 |
Copyright terms: Public domain | W3C validator |