| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2idlelb | Structured version Visualization version GIF version | ||
| Description: Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl 21197. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) |
| Ref | Expression |
|---|---|
| 2idlel.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
| 2idlel.o | ⊢ 𝑂 = (oppr‘𝑅) |
| 2idlel.j | ⊢ 𝐽 = (LIdeal‘𝑂) |
| 2idlel.t | ⊢ 𝑇 = (2Ideal‘𝑅) |
| Ref | Expression |
|---|---|
| 2idlelb | ⊢ (𝑈 ∈ 𝑇 ↔ (𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlel.i | . . 3 ⊢ 𝐼 = (LIdeal‘𝑅) | |
| 2 | 2idlel.o | . . 3 ⊢ 𝑂 = (oppr‘𝑅) | |
| 3 | 2idlel.j | . . 3 ⊢ 𝐽 = (LIdeal‘𝑂) | |
| 4 | 2idlel.t | . . 3 ⊢ 𝑇 = (2Ideal‘𝑅) | |
| 5 | 1, 2, 3, 4 | 2idlval 21176 | . 2 ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
| 6 | 5 | elin2 4156 | 1 ⊢ (𝑈 ∈ 𝑇 ↔ (𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 opprcoppr 20239 LIdealclidl 21131 2Idealc2idl 21174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-2idl 21175 |
| This theorem is referenced by: df2idl2rng 21181 2idlelbas 21189 rng2idlsubgsubrng 21193 2idlcpblrng 21196 2idlcpbl 21197 |
| Copyright terms: Public domain | W3C validator |