![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isridl | Structured version Visualization version GIF version |
Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) |
Ref | Expression |
---|---|
isridl.u | β’ π = (LIdealβ(opprβπ )) |
isridl.b | β’ π΅ = (Baseβπ ) |
isridl.t | β’ Β· = (.rβπ ) |
Ref | Expression |
---|---|
isridl | β’ (π β Ring β (πΌ β π β (πΌ β (SubGrpβπ ) β§ βπ₯ β π΅ βπ¦ β πΌ (π¦ Β· π₯) β πΌ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (opprβπ ) = (opprβπ ) | |
2 | 1 | opprring 20153 | . . 3 β’ (π β Ring β (opprβπ ) β Ring) |
3 | isridl.u | . . . 4 β’ π = (LIdealβ(opprβπ )) | |
4 | isridl.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
5 | 1, 4 | opprbas 20149 | . . . 4 β’ π΅ = (Baseβ(opprβπ )) |
6 | eqid 2732 | . . . 4 β’ (.rβ(opprβπ )) = (.rβ(opprβπ )) | |
7 | 3, 5, 6 | dflidl2 20835 | . . 3 β’ ((opprβπ ) β Ring β (πΌ β π β (πΌ β (SubGrpβ(opprβπ )) β§ βπ₯ β π΅ βπ¦ β πΌ (π₯(.rβ(opprβπ ))π¦) β πΌ))) |
8 | 2, 7 | syl 17 | . 2 β’ (π β Ring β (πΌ β π β (πΌ β (SubGrpβ(opprβπ )) β§ βπ₯ β π΅ βπ¦ β πΌ (π₯(.rβ(opprβπ ))π¦) β πΌ))) |
9 | 1 | opprsubg 20158 | . . . . . 6 β’ (SubGrpβπ ) = (SubGrpβ(opprβπ )) |
10 | 9 | eqcomi 2741 | . . . . 5 β’ (SubGrpβ(opprβπ )) = (SubGrpβπ ) |
11 | 10 | a1i 11 | . . . 4 β’ (π β Ring β (SubGrpβ(opprβπ )) = (SubGrpβπ )) |
12 | 11 | eleq2d 2819 | . . 3 β’ (π β Ring β (πΌ β (SubGrpβ(opprβπ )) β πΌ β (SubGrpβπ ))) |
13 | isridl.t | . . . . . . . 8 β’ Β· = (.rβπ ) | |
14 | 4, 13, 1, 6 | opprmul 20145 | . . . . . . 7 β’ (π₯(.rβ(opprβπ ))π¦) = (π¦ Β· π₯) |
15 | 14 | eleq1i 2824 | . . . . . 6 β’ ((π₯(.rβ(opprβπ ))π¦) β πΌ β (π¦ Β· π₯) β πΌ) |
16 | 15 | a1i 11 | . . . . 5 β’ (((π β Ring β§ π₯ β π΅) β§ π¦ β πΌ) β ((π₯(.rβ(opprβπ ))π¦) β πΌ β (π¦ Β· π₯) β πΌ)) |
17 | 16 | ralbidva 3175 | . . . 4 β’ ((π β Ring β§ π₯ β π΅) β (βπ¦ β πΌ (π₯(.rβ(opprβπ ))π¦) β πΌ β βπ¦ β πΌ (π¦ Β· π₯) β πΌ)) |
18 | 17 | ralbidva 3175 | . . 3 β’ (π β Ring β (βπ₯ β π΅ βπ¦ β πΌ (π₯(.rβ(opprβπ ))π¦) β πΌ β βπ₯ β π΅ βπ¦ β πΌ (π¦ Β· π₯) β πΌ)) |
19 | 12, 18 | anbi12d 631 | . 2 β’ (π β Ring β ((πΌ β (SubGrpβ(opprβπ )) β§ βπ₯ β π΅ βπ¦ β πΌ (π₯(.rβ(opprβπ ))π¦) β πΌ) β (πΌ β (SubGrpβπ ) β§ βπ₯ β π΅ βπ¦ β πΌ (π¦ Β· π₯) β πΌ))) |
20 | 8, 19 | bitrd 278 | 1 β’ (π β Ring β (πΌ β π β (πΌ β (SubGrpβπ ) β§ βπ₯ β π΅ βπ¦ β πΌ (π¦ Β· π₯) β πΌ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 βcfv 6540 (class class class)co 7405 Basecbs 17140 .rcmulr 17194 SubGrpcsubg 18994 Ringcrg 20049 opprcoppr 20141 LIdealclidl 20775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-mgp 19982 df-ur 19999 df-ring 20051 df-oppr 20142 df-subrg 20353 df-lmod 20465 df-lss 20535 df-sra 20777 df-rgmod 20778 df-lidl 20779 |
This theorem is referenced by: df2idl2 20852 |
Copyright terms: Public domain | W3C validator |