![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isridl | Structured version Visualization version GIF version |
Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) |
Ref | Expression |
---|---|
isridl.u | β’ π = (LIdealβ(opprβπ )) |
isridl.b | β’ π΅ = (Baseβπ ) |
isridl.t | β’ Β· = (.rβπ ) |
Ref | Expression |
---|---|
isridl | β’ (π β Ring β (πΌ β π β (πΌ β (SubGrpβπ ) β§ βπ₯ β π΅ βπ¦ β πΌ (π¦ Β· π₯) β πΌ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . 4 β’ (opprβπ ) = (opprβπ ) | |
2 | 1 | opprring 20247 | . . 3 β’ (π β Ring β (opprβπ ) β Ring) |
3 | isridl.u | . . . 4 β’ π = (LIdealβ(opprβπ )) | |
4 | isridl.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
5 | 1, 4 | opprbas 20241 | . . . 4 β’ π΅ = (Baseβ(opprβπ )) |
6 | eqid 2726 | . . . 4 β’ (.rβ(opprβπ )) = (.rβ(opprβπ )) | |
7 | 3, 5, 6 | dflidl2 21084 | . . 3 β’ ((opprβπ ) β Ring β (πΌ β π β (πΌ β (SubGrpβ(opprβπ )) β§ βπ₯ β π΅ βπ¦ β πΌ (π₯(.rβ(opprβπ ))π¦) β πΌ))) |
8 | 2, 7 | syl 17 | . 2 β’ (π β Ring β (πΌ β π β (πΌ β (SubGrpβ(opprβπ )) β§ βπ₯ β π΅ βπ¦ β πΌ (π₯(.rβ(opprβπ ))π¦) β πΌ))) |
9 | 1 | opprsubg 20252 | . . . . . 6 β’ (SubGrpβπ ) = (SubGrpβ(opprβπ )) |
10 | 9 | eqcomi 2735 | . . . . 5 β’ (SubGrpβ(opprβπ )) = (SubGrpβπ ) |
11 | 10 | a1i 11 | . . . 4 β’ (π β Ring β (SubGrpβ(opprβπ )) = (SubGrpβπ )) |
12 | 11 | eleq2d 2813 | . . 3 β’ (π β Ring β (πΌ β (SubGrpβ(opprβπ )) β πΌ β (SubGrpβπ ))) |
13 | isridl.t | . . . . . . . 8 β’ Β· = (.rβπ ) | |
14 | 4, 13, 1, 6 | opprmul 20237 | . . . . . . 7 β’ (π₯(.rβ(opprβπ ))π¦) = (π¦ Β· π₯) |
15 | 14 | eleq1i 2818 | . . . . . 6 β’ ((π₯(.rβ(opprβπ ))π¦) β πΌ β (π¦ Β· π₯) β πΌ) |
16 | 15 | a1i 11 | . . . . 5 β’ (((π β Ring β§ π₯ β π΅) β§ π¦ β πΌ) β ((π₯(.rβ(opprβπ ))π¦) β πΌ β (π¦ Β· π₯) β πΌ)) |
17 | 16 | ralbidva 3169 | . . . 4 β’ ((π β Ring β§ π₯ β π΅) β (βπ¦ β πΌ (π₯(.rβ(opprβπ ))π¦) β πΌ β βπ¦ β πΌ (π¦ Β· π₯) β πΌ)) |
18 | 17 | ralbidva 3169 | . . 3 β’ (π β Ring β (βπ₯ β π΅ βπ¦ β πΌ (π₯(.rβ(opprβπ ))π¦) β πΌ β βπ₯ β π΅ βπ¦ β πΌ (π¦ Β· π₯) β πΌ)) |
19 | 12, 18 | anbi12d 630 | . 2 β’ (π β Ring β ((πΌ β (SubGrpβ(opprβπ )) β§ βπ₯ β π΅ βπ¦ β πΌ (π₯(.rβ(opprβπ ))π¦) β πΌ) β (πΌ β (SubGrpβπ ) β§ βπ₯ β π΅ βπ¦ β πΌ (π¦ Β· π₯) β πΌ))) |
20 | 8, 19 | bitrd 279 | 1 β’ (π β Ring β (πΌ β π β (πΌ β (SubGrpβπ ) β§ βπ₯ β π΅ βπ¦ β πΌ (π¦ Β· π₯) β πΌ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3055 βcfv 6536 (class class class)co 7404 Basecbs 17151 .rcmulr 17205 SubGrpcsubg 19045 Ringcrg 20136 opprcoppr 20233 LIdealclidl 21063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8209 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19048 df-cmn 19700 df-abl 19701 df-mgp 20038 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20234 df-subrg 20469 df-lmod 20706 df-lss 20777 df-sra 21019 df-rgmod 21020 df-lidl 21065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |