MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlcpbl Structured version   Visualization version   GIF version

Theorem 2idlcpbl 20505
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlcpbl.x 𝑋 = (Base‘𝑅)
2idlcpbl.r 𝐸 = (𝑅 ~QG 𝑆)
2idlcpbl.i 𝐼 = (2Ideal‘𝑅)
2idlcpbl.t · = (.r𝑅)
Assertion
Ref Expression
2idlcpbl ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))

Proof of Theorem 2idlcpbl
StepHypRef Expression
1 simpll 764 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Ring)
2 eqid 2738 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 eqid 2738 . . . . . . . . . . . . 13 (oppr𝑅) = (oppr𝑅)
4 eqid 2738 . . . . . . . . . . . . 13 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
5 2idlcpbl.i . . . . . . . . . . . . 13 𝐼 = (2Ideal‘𝑅)
62, 3, 4, 52idlval 20504 . . . . . . . . . . . 12 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅)))
76elin2 4131 . . . . . . . . . . 11 (𝑆𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))))
87simplbi 498 . . . . . . . . . 10 (𝑆𝐼𝑆 ∈ (LIdeal‘𝑅))
98ad2antlr 724 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘𝑅))
102lidlsubg 20486 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
111, 9, 10syl2anc 584 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (SubGrp‘𝑅))
12 2idlcpbl.x . . . . . . . . 9 𝑋 = (Base‘𝑅)
13 2idlcpbl.r . . . . . . . . 9 𝐸 = (𝑅 ~QG 𝑆)
1412, 13eqger 18806 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝑅) → 𝐸 Er 𝑋)
1511, 14syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐸 Er 𝑋)
16 simprl 768 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐴𝐸𝐶)
1715, 16ersym 8510 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐶𝐸𝐴)
18 ringabl 19819 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
1918ad2antrr 723 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Abel)
2012, 2lidlss 20481 . . . . . . . 8 (𝑆 ∈ (LIdeal‘𝑅) → 𝑆𝑋)
219, 20syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆𝑋)
22 eqid 2738 . . . . . . . 8 (-g𝑅) = (-g𝑅)
2312, 22, 13eqgabl 19436 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → (𝐶𝐸𝐴 ↔ (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)))
2419, 21, 23syl2anc 584 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶𝐸𝐴 ↔ (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)))
2517, 24mpbid 231 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆))
2625simp2d 1142 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐴𝑋)
27 simprr 770 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵𝐸𝐷)
2812, 22, 13eqgabl 19436 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → (𝐵𝐸𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)))
2919, 21, 28syl2anc 584 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵𝐸𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)))
3027, 29mpbid 231 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆))
3130simp1d 1141 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵𝑋)
32 2idlcpbl.t . . . . 5 · = (.r𝑅)
3312, 32ringcl 19800 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑋𝐵𝑋) → (𝐴 · 𝐵) ∈ 𝑋)
341, 26, 31, 33syl3anc 1370 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴 · 𝐵) ∈ 𝑋)
3525simp1d 1141 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐶𝑋)
3630simp2d 1142 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐷𝑋)
3712, 32ringcl 19800 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝑋𝐷𝑋) → (𝐶 · 𝐷) ∈ 𝑋)
381, 35, 36, 37syl3anc 1370 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · 𝐷) ∈ 𝑋)
39 ringgrp 19788 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4039ad2antrr 723 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Grp)
4112, 32ringcl 19800 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝑋𝐵𝑋) → (𝐶 · 𝐵) ∈ 𝑋)
421, 35, 31, 41syl3anc 1370 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · 𝐵) ∈ 𝑋)
4312, 22grpnnncan2 18672 . . . . 5 ((𝑅 ∈ Grp ∧ ((𝐶 · 𝐷) ∈ 𝑋 ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐵) ∈ 𝑋)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)))
4440, 38, 34, 42, 43syl13anc 1371 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)))
4512, 32, 22, 1, 35, 36, 31ringsubdi 19838 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g𝑅)𝐵)) = ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)))
4630simp3d 1143 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐷(-g𝑅)𝐵) ∈ 𝑆)
472, 12, 32lidlmcl 20488 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) ∧ (𝐶𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)) → (𝐶 · (𝐷(-g𝑅)𝐵)) ∈ 𝑆)
481, 9, 35, 46, 47syl22anc 836 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g𝑅)𝐵)) ∈ 𝑆)
4945, 48eqeltrrd 2840 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)
50 eqid 2738 . . . . . . . 8 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5112, 32, 3, 50opprmul 19865 . . . . . . 7 (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴(-g𝑅)𝐶) · 𝐵)
5212, 32, 22, 1, 26, 35, 31rngsubdir 19839 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴(-g𝑅)𝐶) · 𝐵) = ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)))
5351, 52eqtrid 2790 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)))
543opprring 19873 . . . . . . . 8 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
5554ad2antrr 723 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (oppr𝑅) ∈ Ring)
567simprbi 497 . . . . . . . 8 (𝑆𝐼𝑆 ∈ (LIdeal‘(oppr𝑅)))
5756ad2antlr 724 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘(oppr𝑅)))
5825simp3d 1143 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴(-g𝑅)𝐶) ∈ 𝑆)
593, 12opprbas 19869 . . . . . . . 8 𝑋 = (Base‘(oppr𝑅))
604, 59, 50lidlmcl 20488 . . . . . . 7 ((((oppr𝑅) ∈ Ring ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))) ∧ (𝐵𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) ∈ 𝑆)
6155, 57, 31, 58, 60syl22anc 836 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) ∈ 𝑆)
6253, 61eqeltrrd 2840 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)
632, 22lidlsubcl 20487 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) ∧ (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆 ∧ ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) ∈ 𝑆)
641, 9, 49, 62, 63syl22anc 836 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) ∈ 𝑆)
6544, 64eqeltrrd 2840 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)
6612, 22, 13eqgabl 19436 . . . 4 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)))
6719, 21, 66syl2anc 584 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)))
6834, 38, 65, 67mpbir3and 1341 . 2 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))
6968ex 413 1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275   Er wer 8495  Basecbs 16912  .rcmulr 16963  Grpcgrp 18577  -gcsg 18579  SubGrpcsubg 18749   ~QG cqg 18751  Abelcabl 19387  Ringcrg 19783  opprcoppr 19861  LIdealclidl 20432  2Idealc2idl 20502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-eqg 18754  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-2idl 20503
This theorem is referenced by:  qus1  20506  qusrhm  20508  quscrng  20511  qsidomlem1  31628  qsidomlem2  31629
  Copyright terms: Public domain W3C validator