MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlcpbl Structured version   Visualization version   GIF version

Theorem 2idlcpbl 19595
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlcpbl.x 𝑋 = (Base‘𝑅)
2idlcpbl.r 𝐸 = (𝑅 ~QG 𝑆)
2idlcpbl.i 𝐼 = (2Ideal‘𝑅)
2idlcpbl.t · = (.r𝑅)
Assertion
Ref Expression
2idlcpbl ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))

Proof of Theorem 2idlcpbl
StepHypRef Expression
1 simpll 785 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Ring)
2 eqid 2825 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 eqid 2825 . . . . . . . . . . . . 13 (oppr𝑅) = (oppr𝑅)
4 eqid 2825 . . . . . . . . . . . . 13 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
5 2idlcpbl.i . . . . . . . . . . . . 13 𝐼 = (2Ideal‘𝑅)
62, 3, 4, 52idlval 19594 . . . . . . . . . . . 12 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅)))
76elin2 4028 . . . . . . . . . . 11 (𝑆𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))))
87simplbi 493 . . . . . . . . . 10 (𝑆𝐼𝑆 ∈ (LIdeal‘𝑅))
98ad2antlr 720 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘𝑅))
102lidlsubg 19576 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
111, 9, 10syl2anc 581 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (SubGrp‘𝑅))
12 2idlcpbl.x . . . . . . . . 9 𝑋 = (Base‘𝑅)
13 2idlcpbl.r . . . . . . . . 9 𝐸 = (𝑅 ~QG 𝑆)
1412, 13eqger 17995 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝑅) → 𝐸 Er 𝑋)
1511, 14syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐸 Er 𝑋)
16 simprl 789 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐴𝐸𝐶)
1715, 16ersym 8021 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐶𝐸𝐴)
18 ringabl 18934 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
1918ad2antrr 719 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Abel)
2012, 2lidlss 19571 . . . . . . . 8 (𝑆 ∈ (LIdeal‘𝑅) → 𝑆𝑋)
219, 20syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆𝑋)
22 eqid 2825 . . . . . . . 8 (-g𝑅) = (-g𝑅)
2312, 22, 13eqgabl 18593 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → (𝐶𝐸𝐴 ↔ (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)))
2419, 21, 23syl2anc 581 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶𝐸𝐴 ↔ (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)))
2517, 24mpbid 224 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆))
2625simp2d 1179 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐴𝑋)
27 simprr 791 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵𝐸𝐷)
2812, 22, 13eqgabl 18593 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → (𝐵𝐸𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)))
2919, 21, 28syl2anc 581 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵𝐸𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)))
3027, 29mpbid 224 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆))
3130simp1d 1178 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵𝑋)
32 2idlcpbl.t . . . . 5 · = (.r𝑅)
3312, 32ringcl 18915 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑋𝐵𝑋) → (𝐴 · 𝐵) ∈ 𝑋)
341, 26, 31, 33syl3anc 1496 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴 · 𝐵) ∈ 𝑋)
3525simp1d 1178 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐶𝑋)
3630simp2d 1179 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐷𝑋)
3712, 32ringcl 18915 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝑋𝐷𝑋) → (𝐶 · 𝐷) ∈ 𝑋)
381, 35, 36, 37syl3anc 1496 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · 𝐷) ∈ 𝑋)
39 ringgrp 18906 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4039ad2antrr 719 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Grp)
4112, 32ringcl 18915 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝑋𝐵𝑋) → (𝐶 · 𝐵) ∈ 𝑋)
421, 35, 31, 41syl3anc 1496 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · 𝐵) ∈ 𝑋)
4312, 22grpnnncan2 17866 . . . . 5 ((𝑅 ∈ Grp ∧ ((𝐶 · 𝐷) ∈ 𝑋 ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐵) ∈ 𝑋)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)))
4440, 38, 34, 42, 43syl13anc 1497 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)))
4512, 32, 22, 1, 35, 36, 31ringsubdi 18953 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g𝑅)𝐵)) = ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)))
4630simp3d 1180 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐷(-g𝑅)𝐵) ∈ 𝑆)
472, 12, 32lidlmcl 19578 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) ∧ (𝐶𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)) → (𝐶 · (𝐷(-g𝑅)𝐵)) ∈ 𝑆)
481, 9, 35, 46, 47syl22anc 874 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g𝑅)𝐵)) ∈ 𝑆)
4945, 48eqeltrrd 2907 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)
50 eqid 2825 . . . . . . . 8 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5112, 32, 3, 50opprmul 18980 . . . . . . 7 (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴(-g𝑅)𝐶) · 𝐵)
5212, 32, 22, 1, 26, 35, 31rngsubdir 18954 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴(-g𝑅)𝐶) · 𝐵) = ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)))
5351, 52syl5eq 2873 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)))
543opprring 18985 . . . . . . . 8 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
5554ad2antrr 719 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (oppr𝑅) ∈ Ring)
567simprbi 492 . . . . . . . 8 (𝑆𝐼𝑆 ∈ (LIdeal‘(oppr𝑅)))
5756ad2antlr 720 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘(oppr𝑅)))
5825simp3d 1180 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴(-g𝑅)𝐶) ∈ 𝑆)
593, 12opprbas 18983 . . . . . . . 8 𝑋 = (Base‘(oppr𝑅))
604, 59, 50lidlmcl 19578 . . . . . . 7 ((((oppr𝑅) ∈ Ring ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))) ∧ (𝐵𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) ∈ 𝑆)
6155, 57, 31, 58, 60syl22anc 874 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) ∈ 𝑆)
6253, 61eqeltrrd 2907 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)
632, 22lidlsubcl 19577 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) ∧ (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆 ∧ ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) ∈ 𝑆)
641, 9, 49, 62, 63syl22anc 874 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) ∈ 𝑆)
6544, 64eqeltrrd 2907 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)
6612, 22, 13eqgabl 18593 . . . 4 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)))
6719, 21, 66syl2anc 581 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)))
6834, 38, 65, 67mpbir3and 1448 . 2 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))
6968ex 403 1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wss 3798   class class class wbr 4873  cfv 6123  (class class class)co 6905   Er wer 8006  Basecbs 16222  .rcmulr 16306  Grpcgrp 17776  -gcsg 17778  SubGrpcsubg 17939   ~QG cqg 17941  Abelcabl 18547  Ringcrg 18901  opprcoppr 18976  LIdealclidl 19531  2Idealc2idl 19592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-tpos 7617  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-sca 16321  df-vsca 16322  df-ip 16323  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779  df-minusg 17780  df-sbg 17781  df-subg 17942  df-eqg 17944  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-oppr 18977  df-subrg 19134  df-lmod 19221  df-lss 19289  df-sra 19533  df-rgmod 19534  df-lidl 19535  df-2idl 19593
This theorem is referenced by:  qus1  19596  qusrhm  19598  quscrng  19601
  Copyright terms: Public domain W3C validator