Proof of Theorem 2idlcpbl
Step | Hyp | Ref
| Expression |
1 | | simpll 763 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑅 ∈ Ring) |
2 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
3 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
4 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(LIdeal‘(oppr‘𝑅)) =
(LIdeal‘(oppr‘𝑅)) |
5 | | 2idlcpbl.i |
. . . . . . . . . . . . 13
⊢ 𝐼 = (2Ideal‘𝑅) |
6 | 2, 3, 4, 5 | 2idlval 20417 |
. . . . . . . . . . . 12
⊢ 𝐼 = ((LIdeal‘𝑅) ∩
(LIdeal‘(oppr‘𝑅))) |
7 | 6 | elin2 4127 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈
(LIdeal‘(oppr‘𝑅)))) |
8 | 7 | simplbi 497 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈ (LIdeal‘𝑅)) |
9 | 8 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘𝑅)) |
10 | 2 | lidlsubg 20399 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅)) |
11 | 1, 9, 10 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ∈ (SubGrp‘𝑅)) |
12 | | 2idlcpbl.x |
. . . . . . . . 9
⊢ 𝑋 = (Base‘𝑅) |
13 | | 2idlcpbl.r |
. . . . . . . . 9
⊢ 𝐸 = (𝑅 ~QG 𝑆) |
14 | 12, 13 | eqger 18721 |
. . . . . . . 8
⊢ (𝑆 ∈ (SubGrp‘𝑅) → 𝐸 Er 𝑋) |
15 | 11, 14 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐸 Er 𝑋) |
16 | | simprl 767 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐴𝐸𝐶) |
17 | 15, 16 | ersym 8468 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐶𝐸𝐴) |
18 | | ringabl 19734 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) |
19 | 18 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑅 ∈ Abel) |
20 | 12, 2 | lidlss 20394 |
. . . . . . . 8
⊢ (𝑆 ∈ (LIdeal‘𝑅) → 𝑆 ⊆ 𝑋) |
21 | 9, 20 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ⊆ 𝑋) |
22 | | eqid 2738 |
. . . . . . . 8
⊢
(-g‘𝑅) = (-g‘𝑅) |
23 | 12, 22, 13 | eqgabl 19351 |
. . . . . . 7
⊢ ((𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐶𝐸𝐴 ↔ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆))) |
24 | 19, 21, 23 | syl2anc 583 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶𝐸𝐴 ↔ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆))) |
25 | 17, 24 | mpbid 231 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆)) |
26 | 25 | simp2d 1141 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐴 ∈ 𝑋) |
27 | | simprr 769 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐵𝐸𝐷) |
28 | 12, 22, 13 | eqgabl 19351 |
. . . . . . 7
⊢ ((𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐵𝐸𝐷 ↔ (𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆))) |
29 | 19, 21, 28 | syl2anc 583 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵𝐸𝐷 ↔ (𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆))) |
30 | 27, 29 | mpbid 231 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆)) |
31 | 30 | simp1d 1140 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐵 ∈ 𝑋) |
32 | | 2idlcpbl.t |
. . . . 5
⊢ · =
(.r‘𝑅) |
33 | 12, 32 | ringcl 19715 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 · 𝐵) ∈ 𝑋) |
34 | 1, 26, 31, 33 | syl3anc 1369 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐴 · 𝐵) ∈ 𝑋) |
35 | 25 | simp1d 1140 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐶 ∈ 𝑋) |
36 | 30 | simp2d 1141 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝐷 ∈ 𝑋) |
37 | 12, 32 | ringcl 19715 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐶 · 𝐷) ∈ 𝑋) |
38 | 1, 35, 36, 37 | syl3anc 1369 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · 𝐷) ∈ 𝑋) |
39 | | ringgrp 19703 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
40 | 39 | ad2antrr 722 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑅 ∈ Grp) |
41 | 12, 32 | ringcl 19715 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐶 · 𝐵) ∈ 𝑋) |
42 | 1, 35, 31, 41 | syl3anc 1369 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · 𝐵) ∈ 𝑋) |
43 | 12, 22 | grpnnncan2 18587 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ ((𝐶 · 𝐷) ∈ 𝑋 ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐵) ∈ 𝑋)) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵))) |
44 | 40, 38, 34, 42, 43 | syl13anc 1370 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵))) |
45 | 12, 32, 22, 1, 35, 36, 31 | ringsubdi 19753 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g‘𝑅)𝐵)) = ((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))) |
46 | 30 | simp3d 1142 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐷(-g‘𝑅)𝐵) ∈ 𝑆) |
47 | 2, 12, 32 | lidlmcl 20401 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) ∧ (𝐶 ∈ 𝑋 ∧ (𝐷(-g‘𝑅)𝐵) ∈ 𝑆)) → (𝐶 · (𝐷(-g‘𝑅)𝐵)) ∈ 𝑆) |
48 | 1, 9, 35, 46, 47 | syl22anc 835 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g‘𝑅)𝐵)) ∈ 𝑆) |
49 | 45, 48 | eqeltrrd 2840 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆) |
50 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
51 | 12, 32, 3, 50 | opprmul 19780 |
. . . . . . 7
⊢ (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
= ((𝐴(-g‘𝑅)𝐶) · 𝐵) |
52 | 12, 32, 22, 1, 26, 35, 31 | rngsubdir 19754 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐴(-g‘𝑅)𝐶) · 𝐵) = ((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) |
53 | 51, 52 | eqtrid 2790 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
= ((𝐴 · 𝐵)(-g‘𝑅)(𝐶
· 𝐵))) |
54 | 3 | opprring 19788 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(oppr‘𝑅) ∈ Ring) |
55 | 54 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) →
(oppr‘𝑅) ∈ Ring) |
56 | 7 | simprbi 496 |
. . . . . . . 8
⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈
(LIdeal‘(oppr‘𝑅))) |
57 | 56 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → 𝑆 ∈
(LIdeal‘(oppr‘𝑅))) |
58 | 25 | simp3d 1142 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐴(-g‘𝑅)𝐶) ∈ 𝑆) |
59 | 3, 12 | opprbas 19784 |
. . . . . . . 8
⊢ 𝑋 =
(Base‘(oppr‘𝑅)) |
60 | 4, 59, 50 | lidlmcl 20401 |
. . . . . . 7
⊢
((((oppr‘𝑅) ∈ Ring ∧ 𝑆 ∈
(LIdeal‘(oppr‘𝑅))) ∧ (𝐵 ∈ 𝑋 ∧ (𝐴(-g‘𝑅)𝐶) ∈ 𝑆)) → (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
∈ 𝑆) |
61 | 55, 57, 31, 58, 60 | syl22anc 835 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐵(.r‘(oppr‘𝑅))(𝐴(-g‘𝑅)𝐶))
∈ 𝑆) |
62 | 53, 61 | eqeltrrd 2840 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆) |
63 | 2, 22 | lidlsubcl 20400 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) ∧ (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆 ∧ ((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵)) ∈ 𝑆)) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) ∈ 𝑆) |
64 | 1, 9, 49, 62, 63 | syl22anc 835 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g‘𝑅)(𝐶 · 𝐵))(-g‘𝑅)((𝐴 · 𝐵)(-g‘𝑅)(𝐶 · 𝐵))) ∈ 𝑆) |
65 | 44, 64 | eqeltrrd 2840 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵)) ∈ 𝑆) |
66 | 12, 22, 13 | eqgabl 19351 |
. . . 4
⊢ ((𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵)) ∈ 𝑆))) |
67 | 19, 21, 66 | syl2anc 583 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g‘𝑅)(𝐴 · 𝐵)) ∈ 𝑆))) |
68 | 34, 38, 65, 67 | mpbir3and 1340 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷)) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)) |
69 | 68 | ex 412 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))) |