MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlcpbl Structured version   Visualization version   GIF version

Theorem 2idlcpbl 19999
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlcpbl.x 𝑋 = (Base‘𝑅)
2idlcpbl.r 𝐸 = (𝑅 ~QG 𝑆)
2idlcpbl.i 𝐼 = (2Ideal‘𝑅)
2idlcpbl.t · = (.r𝑅)
Assertion
Ref Expression
2idlcpbl ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))

Proof of Theorem 2idlcpbl
StepHypRef Expression
1 simpll 765 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Ring)
2 eqid 2819 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 eqid 2819 . . . . . . . . . . . . 13 (oppr𝑅) = (oppr𝑅)
4 eqid 2819 . . . . . . . . . . . . 13 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
5 2idlcpbl.i . . . . . . . . . . . . 13 𝐼 = (2Ideal‘𝑅)
62, 3, 4, 52idlval 19998 . . . . . . . . . . . 12 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅)))
76elin2 4172 . . . . . . . . . . 11 (𝑆𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))))
87simplbi 500 . . . . . . . . . 10 (𝑆𝐼𝑆 ∈ (LIdeal‘𝑅))
98ad2antlr 725 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘𝑅))
102lidlsubg 19980 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
111, 9, 10syl2anc 586 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (SubGrp‘𝑅))
12 2idlcpbl.x . . . . . . . . 9 𝑋 = (Base‘𝑅)
13 2idlcpbl.r . . . . . . . . 9 𝐸 = (𝑅 ~QG 𝑆)
1412, 13eqger 18322 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝑅) → 𝐸 Er 𝑋)
1511, 14syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐸 Er 𝑋)
16 simprl 769 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐴𝐸𝐶)
1715, 16ersym 8293 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐶𝐸𝐴)
18 ringabl 19322 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
1918ad2antrr 724 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Abel)
2012, 2lidlss 19975 . . . . . . . 8 (𝑆 ∈ (LIdeal‘𝑅) → 𝑆𝑋)
219, 20syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆𝑋)
22 eqid 2819 . . . . . . . 8 (-g𝑅) = (-g𝑅)
2312, 22, 13eqgabl 18947 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → (𝐶𝐸𝐴 ↔ (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)))
2419, 21, 23syl2anc 586 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶𝐸𝐴 ↔ (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)))
2517, 24mpbid 234 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆))
2625simp2d 1138 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐴𝑋)
27 simprr 771 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵𝐸𝐷)
2812, 22, 13eqgabl 18947 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → (𝐵𝐸𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)))
2919, 21, 28syl2anc 586 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵𝐸𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)))
3027, 29mpbid 234 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆))
3130simp1d 1137 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵𝑋)
32 2idlcpbl.t . . . . 5 · = (.r𝑅)
3312, 32ringcl 19303 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑋𝐵𝑋) → (𝐴 · 𝐵) ∈ 𝑋)
341, 26, 31, 33syl3anc 1366 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴 · 𝐵) ∈ 𝑋)
3525simp1d 1137 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐶𝑋)
3630simp2d 1138 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐷𝑋)
3712, 32ringcl 19303 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝑋𝐷𝑋) → (𝐶 · 𝐷) ∈ 𝑋)
381, 35, 36, 37syl3anc 1366 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · 𝐷) ∈ 𝑋)
39 ringgrp 19294 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4039ad2antrr 724 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Grp)
4112, 32ringcl 19303 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝑋𝐵𝑋) → (𝐶 · 𝐵) ∈ 𝑋)
421, 35, 31, 41syl3anc 1366 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · 𝐵) ∈ 𝑋)
4312, 22grpnnncan2 18188 . . . . 5 ((𝑅 ∈ Grp ∧ ((𝐶 · 𝐷) ∈ 𝑋 ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐵) ∈ 𝑋)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)))
4440, 38, 34, 42, 43syl13anc 1367 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)))
4512, 32, 22, 1, 35, 36, 31ringsubdi 19341 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g𝑅)𝐵)) = ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)))
4630simp3d 1139 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐷(-g𝑅)𝐵) ∈ 𝑆)
472, 12, 32lidlmcl 19982 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) ∧ (𝐶𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)) → (𝐶 · (𝐷(-g𝑅)𝐵)) ∈ 𝑆)
481, 9, 35, 46, 47syl22anc 836 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g𝑅)𝐵)) ∈ 𝑆)
4945, 48eqeltrrd 2912 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)
50 eqid 2819 . . . . . . . 8 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5112, 32, 3, 50opprmul 19368 . . . . . . 7 (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴(-g𝑅)𝐶) · 𝐵)
5212, 32, 22, 1, 26, 35, 31rngsubdir 19342 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴(-g𝑅)𝐶) · 𝐵) = ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)))
5351, 52syl5eq 2866 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)))
543opprring 19373 . . . . . . . 8 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
5554ad2antrr 724 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (oppr𝑅) ∈ Ring)
567simprbi 499 . . . . . . . 8 (𝑆𝐼𝑆 ∈ (LIdeal‘(oppr𝑅)))
5756ad2antlr 725 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘(oppr𝑅)))
5825simp3d 1139 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴(-g𝑅)𝐶) ∈ 𝑆)
593, 12opprbas 19371 . . . . . . . 8 𝑋 = (Base‘(oppr𝑅))
604, 59, 50lidlmcl 19982 . . . . . . 7 ((((oppr𝑅) ∈ Ring ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))) ∧ (𝐵𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) ∈ 𝑆)
6155, 57, 31, 58, 60syl22anc 836 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) ∈ 𝑆)
6253, 61eqeltrrd 2912 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)
632, 22lidlsubcl 19981 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) ∧ (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆 ∧ ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) ∈ 𝑆)
641, 9, 49, 62, 63syl22anc 836 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) ∈ 𝑆)
6544, 64eqeltrrd 2912 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)
6612, 22, 13eqgabl 18947 . . . 4 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)))
6719, 21, 66syl2anc 586 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)))
6834, 38, 65, 67mpbir3and 1337 . 2 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))
6968ex 415 1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wss 3934   class class class wbr 5057  cfv 6348  (class class class)co 7148   Er wer 8278  Basecbs 16475  .rcmulr 16558  Grpcgrp 18095  -gcsg 18097  SubGrpcsubg 18265   ~QG cqg 18267  Abelcabl 18899  Ringcrg 19289  opprcoppr 19364  LIdealclidl 19934  2Idealc2idl 19996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-eqg 18270  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-oppr 19365  df-subrg 19525  df-lmod 19628  df-lss 19696  df-sra 19936  df-rgmod 19937  df-lidl 19938  df-2idl 19997
This theorem is referenced by:  qus1  20000  qusrhm  20002  quscrng  20005  qsidomlem1  30958  qsidomlem2  30959
  Copyright terms: Public domain W3C validator