MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlcpbl Structured version   Visualization version   GIF version

Theorem 2idlcpbl 20704
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlcpbl.x 𝑋 = (Base‘𝑅)
2idlcpbl.r 𝐸 = (𝑅 ~QG 𝑆)
2idlcpbl.i 𝐼 = (2Ideal‘𝑅)
2idlcpbl.t · = (.r𝑅)
Assertion
Ref Expression
2idlcpbl ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))

Proof of Theorem 2idlcpbl
StepHypRef Expression
1 simpll 765 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Ring)
2 eqid 2736 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 eqid 2736 . . . . . . . . . . . . 13 (oppr𝑅) = (oppr𝑅)
4 eqid 2736 . . . . . . . . . . . . 13 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
5 2idlcpbl.i . . . . . . . . . . . . 13 𝐼 = (2Ideal‘𝑅)
62, 3, 4, 52idlval 20703 . . . . . . . . . . . 12 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅)))
76elin2 4157 . . . . . . . . . . 11 (𝑆𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))))
87simplbi 498 . . . . . . . . . 10 (𝑆𝐼𝑆 ∈ (LIdeal‘𝑅))
98ad2antlr 725 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘𝑅))
102lidlsubg 20685 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
111, 9, 10syl2anc 584 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (SubGrp‘𝑅))
12 2idlcpbl.x . . . . . . . . 9 𝑋 = (Base‘𝑅)
13 2idlcpbl.r . . . . . . . . 9 𝐸 = (𝑅 ~QG 𝑆)
1412, 13eqger 18980 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝑅) → 𝐸 Er 𝑋)
1511, 14syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐸 Er 𝑋)
16 simprl 769 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐴𝐸𝐶)
1715, 16ersym 8660 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐶𝐸𝐴)
18 ringabl 20002 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
1918ad2antrr 724 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Abel)
2012, 2lidlss 20680 . . . . . . . 8 (𝑆 ∈ (LIdeal‘𝑅) → 𝑆𝑋)
219, 20syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆𝑋)
22 eqid 2736 . . . . . . . 8 (-g𝑅) = (-g𝑅)
2312, 22, 13eqgabl 19613 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → (𝐶𝐸𝐴 ↔ (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)))
2419, 21, 23syl2anc 584 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶𝐸𝐴 ↔ (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)))
2517, 24mpbid 231 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶𝑋𝐴𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆))
2625simp2d 1143 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐴𝑋)
27 simprr 771 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵𝐸𝐷)
2812, 22, 13eqgabl 19613 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → (𝐵𝐸𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)))
2919, 21, 28syl2anc 584 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵𝐸𝐷 ↔ (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)))
3027, 29mpbid 231 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵𝑋𝐷𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆))
3130simp1d 1142 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐵𝑋)
32 2idlcpbl.t . . . . 5 · = (.r𝑅)
3312, 32ringcl 19981 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑋𝐵𝑋) → (𝐴 · 𝐵) ∈ 𝑋)
341, 26, 31, 33syl3anc 1371 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴 · 𝐵) ∈ 𝑋)
3525simp1d 1142 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐶𝑋)
3630simp2d 1143 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝐷𝑋)
3712, 32ringcl 19981 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝑋𝐷𝑋) → (𝐶 · 𝐷) ∈ 𝑋)
381, 35, 36, 37syl3anc 1371 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · 𝐷) ∈ 𝑋)
39 ringgrp 19969 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4039ad2antrr 724 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑅 ∈ Grp)
4112, 32ringcl 19981 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝑋𝐵𝑋) → (𝐶 · 𝐵) ∈ 𝑋)
421, 35, 31, 41syl3anc 1371 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · 𝐵) ∈ 𝑋)
4312, 22grpnnncan2 18844 . . . . 5 ((𝑅 ∈ Grp ∧ ((𝐶 · 𝐷) ∈ 𝑋 ∧ (𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐵) ∈ 𝑋)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)))
4440, 38, 34, 42, 43syl13anc 1372 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) = ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)))
4512, 32, 22, 1, 35, 36, 31ringsubdi 20023 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g𝑅)𝐵)) = ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)))
4630simp3d 1144 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐷(-g𝑅)𝐵) ∈ 𝑆)
472, 12, 32lidlmcl 20687 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) ∧ (𝐶𝑋 ∧ (𝐷(-g𝑅)𝐵) ∈ 𝑆)) → (𝐶 · (𝐷(-g𝑅)𝐵)) ∈ 𝑆)
481, 9, 35, 46, 47syl22anc 837 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐶 · (𝐷(-g𝑅)𝐵)) ∈ 𝑆)
4945, 48eqeltrrd 2839 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)
50 eqid 2736 . . . . . . . 8 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5112, 32, 3, 50opprmul 20052 . . . . . . 7 (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴(-g𝑅)𝐶) · 𝐵)
5212, 32, 22, 1, 26, 35, 31ringsubdir 20024 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴(-g𝑅)𝐶) · 𝐵) = ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)))
5351, 52eqtrid 2788 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) = ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)))
543opprring 20060 . . . . . . . 8 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
5554ad2antrr 724 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (oppr𝑅) ∈ Ring)
567simprbi 497 . . . . . . . 8 (𝑆𝐼𝑆 ∈ (LIdeal‘(oppr𝑅)))
5756ad2antlr 725 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → 𝑆 ∈ (LIdeal‘(oppr𝑅)))
5825simp3d 1144 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴(-g𝑅)𝐶) ∈ 𝑆)
593, 12opprbas 20056 . . . . . . . 8 𝑋 = (Base‘(oppr𝑅))
604, 59, 50lidlmcl 20687 . . . . . . 7 ((((oppr𝑅) ∈ Ring ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))) ∧ (𝐵𝑋 ∧ (𝐴(-g𝑅)𝐶) ∈ 𝑆)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) ∈ 𝑆)
6155, 57, 31, 58, 60syl22anc 837 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐵(.r‘(oppr𝑅))(𝐴(-g𝑅)𝐶)) ∈ 𝑆)
6253, 61eqeltrrd 2839 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)
632, 22lidlsubcl 20686 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) ∧ (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆 ∧ ((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵)) ∈ 𝑆)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) ∈ 𝑆)
641, 9, 49, 62, 63syl22anc 837 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (((𝐶 · 𝐷)(-g𝑅)(𝐶 · 𝐵))(-g𝑅)((𝐴 · 𝐵)(-g𝑅)(𝐶 · 𝐵))) ∈ 𝑆)
6544, 64eqeltrrd 2839 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)
6612, 22, 13eqgabl 19613 . . . 4 ((𝑅 ∈ Abel ∧ 𝑆𝑋) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)))
6719, 21, 66syl2anc 584 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → ((𝐴 · 𝐵)𝐸(𝐶 · 𝐷) ↔ ((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐶 · 𝐷) ∈ 𝑋 ∧ ((𝐶 · 𝐷)(-g𝑅)(𝐴 · 𝐵)) ∈ 𝑆)))
6834, 38, 65, 67mpbir3and 1342 . 2 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝐴𝐸𝐶𝐵𝐸𝐷)) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))
6968ex 413 1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3910   class class class wbr 5105  cfv 6496  (class class class)co 7357   Er wer 8645  Basecbs 17083  .rcmulr 17134  Grpcgrp 18748  -gcsg 18750  SubGrpcsubg 18922   ~QG cqg 18924  Abelcabl 19563  Ringcrg 19964  opprcoppr 20048  LIdealclidl 20631  2Idealc2idl 20701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-eqg 18927  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-subrg 20220  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-2idl 20702
This theorem is referenced by:  qus1  20705  qusrhm  20707  quscrng  20710  qsidomlem1  32225  qsidomlem2  32226
  Copyright terms: Public domain W3C validator