| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2ndbr | Structured version Visualization version GIF version | ||
| Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
| Ref | Expression |
|---|---|
| 1st2ndbr | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd 7997 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 2 | simpr 484 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | eqeltrrd 2829 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) |
| 4 | df-br 5103 | . 2 ⊢ ((1st ‘𝐴)𝐵(2nd ‘𝐴) ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 Rel wrel 5636 ‘cfv 6499 1st c1st 7945 2nd c2nd 7946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fv 6507 df-1st 7947 df-2nd 7948 |
| This theorem is referenced by: cofuval 17824 cofu1 17826 cofu2 17828 cofucl 17830 cofuass 17831 cofulid 17832 cofurid 17833 funcres 17838 cofull 17878 cofth 17879 isnat2 17893 fuccocl 17909 fucidcl 17910 fuclid 17911 fucrid 17912 fucass 17913 fucsect 17917 fucinv 17918 invfuc 17919 fuciso 17920 natpropd 17921 fucpropd 17922 homahom 17981 homadm 17982 homacd 17983 homadmcd 17984 catciso 18053 prfval 18140 prfcl 18144 prf1st 18145 prf2nd 18146 1st2ndprf 18147 evlfcllem 18162 evlfcl 18163 curf1cl 18169 curf2cl 18172 curfcl 18173 uncf1 18177 uncf2 18178 curfuncf 18179 uncfcurf 18180 diag1cl 18183 diag2cl 18187 curf2ndf 18188 yon1cl 18204 oyon1cl 18212 yonedalem1 18213 yonedalem21 18214 yonedalem3a 18215 yonedalem4c 18218 yonedalem22 18219 yonedalem3b 18220 yonedalem3 18221 yonedainv 18222 yonffthlem 18223 yoniso 18226 utop2nei 24171 utop3cls 24172 func1st2nd 49058 oppfval2 49119 idfullsubc 49143 fulloppf 49145 fthoppf 49146 up1st2nd2 49170 uptra 49197 uptrar 49198 uptr2a 49204 diag1 49286 fuco11bALT 49320 precofvalALT 49350 thincciso 49435 thincciso2 49437 eufunclem 49503 |
| Copyright terms: Public domain | W3C validator |