![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1st2ndbr | Structured version Visualization version GIF version |
Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
1st2ndbr | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd 7594 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | simpr 485 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
3 | 1, 2 | eqeltrrd 2884 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) |
4 | df-br 4963 | . 2 ⊢ ((1st ‘𝐴)𝐵(2nd ‘𝐴) ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) | |
5 | 3, 4 | sylibr 235 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2081 〈cop 4478 class class class wbr 4962 Rel wrel 5448 ‘cfv 6225 1st c1st 7543 2nd c2nd 7544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-iota 6189 df-fun 6227 df-fv 6233 df-1st 7545 df-2nd 7546 |
This theorem is referenced by: cofuval 16981 cofu1 16983 cofu2 16985 cofucl 16987 cofuass 16988 cofulid 16989 cofurid 16990 funcres 16995 cofull 17033 cofth 17034 isnat2 17047 fuccocl 17063 fucidcl 17064 fuclid 17065 fucrid 17066 fucass 17067 fucsect 17071 fucinv 17072 invfuc 17073 fuciso 17074 natpropd 17075 fucpropd 17076 homahom 17128 homadm 17129 homacd 17130 homadmcd 17131 catciso 17196 prfval 17278 prfcl 17282 prf1st 17283 prf2nd 17284 1st2ndprf 17285 evlfcllem 17300 evlfcl 17301 curf1cl 17307 curf2cl 17310 curfcl 17311 uncf1 17315 uncf2 17316 curfuncf 17317 uncfcurf 17318 diag1cl 17321 diag2cl 17325 curf2ndf 17326 yon1cl 17342 oyon1cl 17350 yonedalem1 17351 yonedalem21 17352 yonedalem3a 17353 yonedalem4c 17356 yonedalem22 17357 yonedalem3b 17358 yonedalem3 17359 yonedainv 17360 yonffthlem 17361 yoniso 17364 utop2nei 22542 utop3cls 22543 |
Copyright terms: Public domain | W3C validator |