| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2ndbr | Structured version Visualization version GIF version | ||
| Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
| Ref | Expression |
|---|---|
| 1st2ndbr | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd 8038 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 2 | simpr 484 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | eqeltrrd 2835 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) |
| 4 | df-br 5120 | . 2 ⊢ ((1st ‘𝐴)𝐵(2nd ‘𝐴) ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 Rel wrel 5659 ‘cfv 6531 1st c1st 7986 2nd c2nd 7987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-1st 7988 df-2nd 7989 |
| This theorem is referenced by: cofuval 17895 cofu1 17897 cofu2 17899 cofucl 17901 cofuass 17902 cofulid 17903 cofurid 17904 funcres 17909 cofull 17949 cofth 17950 isnat2 17964 fuccocl 17980 fucidcl 17981 fuclid 17982 fucrid 17983 fucass 17984 fucsect 17988 fucinv 17989 invfuc 17990 fuciso 17991 natpropd 17992 fucpropd 17993 homahom 18052 homadm 18053 homacd 18054 homadmcd 18055 catciso 18124 prfval 18211 prfcl 18215 prf1st 18216 prf2nd 18217 1st2ndprf 18218 evlfcllem 18233 evlfcl 18234 curf1cl 18240 curf2cl 18243 curfcl 18244 uncf1 18248 uncf2 18249 curfuncf 18250 uncfcurf 18251 diag1cl 18254 diag2cl 18258 curf2ndf 18259 yon1cl 18275 oyon1cl 18283 yonedalem1 18284 yonedalem21 18285 yonedalem3a 18286 yonedalem4c 18289 yonedalem22 18290 yonedalem3b 18291 yonedalem3 18292 yonedainv 18293 yonffthlem 18294 yoniso 18297 utop2nei 24189 utop3cls 24190 func1st2nd 49043 oppfval2 49083 idfullsubc 49100 up1st2nd2 49122 diag1 49215 fuco11bALT 49249 precofvalALT 49279 thincciso 49339 thincciso2 49341 eufunclem 49406 |
| Copyright terms: Public domain | W3C validator |