Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1st2ndbr | Structured version Visualization version GIF version |
Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
1st2ndbr | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd 7889 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | simpr 485 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
3 | 1, 2 | eqeltrrd 2841 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) |
4 | df-br 5076 | . 2 ⊢ ((1st ‘𝐴)𝐵(2nd ‘𝐴) ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2107 〈cop 4568 class class class wbr 5075 Rel wrel 5595 ‘cfv 6437 1st c1st 7838 2nd c2nd 7839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6395 df-fun 6439 df-fv 6445 df-1st 7840 df-2nd 7841 |
This theorem is referenced by: cofuval 17606 cofu1 17608 cofu2 17610 cofucl 17612 cofuass 17613 cofulid 17614 cofurid 17615 funcres 17620 cofull 17659 cofth 17660 isnat2 17673 fuccocl 17691 fucidcl 17692 fuclid 17693 fucrid 17694 fucass 17695 fucsect 17699 fucinv 17700 invfuc 17701 fuciso 17702 natpropd 17703 fucpropd 17704 homahom 17763 homadm 17764 homacd 17765 homadmcd 17766 catciso 17835 prfval 17925 prfcl 17929 prf1st 17930 prf2nd 17931 1st2ndprf 17932 evlfcllem 17948 evlfcl 17949 curf1cl 17955 curf2cl 17958 curfcl 17959 uncf1 17963 uncf2 17964 curfuncf 17965 uncfcurf 17966 diag1cl 17969 diag2cl 17973 curf2ndf 17974 yon1cl 17990 oyon1cl 17998 yonedalem1 17999 yonedalem21 18000 yonedalem3a 18001 yonedalem4c 18004 yonedalem22 18005 yonedalem3b 18006 yonedalem3 18007 yonedainv 18008 yonffthlem 18009 yoniso 18012 utop2nei 23411 utop3cls 23412 thincciso 46341 |
Copyright terms: Public domain | W3C validator |