![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1st2ndbr | Structured version Visualization version GIF version |
Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
1st2ndbr | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd 8025 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
2 | simpr 486 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
3 | 1, 2 | eqeltrrd 2835 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ 𝐵) |
4 | df-br 5150 | . 2 ⊢ ((1st ‘𝐴)𝐵(2nd ‘𝐴) ↔ ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ 𝐵) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ⟨cop 4635 class class class wbr 5149 Rel wrel 5682 ‘cfv 6544 1st c1st 7973 2nd c2nd 7974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-1st 7975 df-2nd 7976 |
This theorem is referenced by: cofuval 17832 cofu1 17834 cofu2 17836 cofucl 17838 cofuass 17839 cofulid 17840 cofurid 17841 funcres 17846 cofull 17885 cofth 17886 isnat2 17899 fuccocl 17917 fucidcl 17918 fuclid 17919 fucrid 17920 fucass 17921 fucsect 17925 fucinv 17926 invfuc 17927 fuciso 17928 natpropd 17929 fucpropd 17930 homahom 17989 homadm 17990 homacd 17991 homadmcd 17992 catciso 18061 prfval 18151 prfcl 18155 prf1st 18156 prf2nd 18157 1st2ndprf 18158 evlfcllem 18174 evlfcl 18175 curf1cl 18181 curf2cl 18184 curfcl 18185 uncf1 18189 uncf2 18190 curfuncf 18191 uncfcurf 18192 diag1cl 18195 diag2cl 18199 curf2ndf 18200 yon1cl 18216 oyon1cl 18224 yonedalem1 18225 yonedalem21 18226 yonedalem3a 18227 yonedalem4c 18230 yonedalem22 18231 yonedalem3b 18232 yonedalem3 18233 yonedainv 18234 yonffthlem 18235 yoniso 18238 utop2nei 23755 utop3cls 23756 thincciso 47669 |
Copyright terms: Public domain | W3C validator |