| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2ndbr | Structured version Visualization version GIF version | ||
| Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
| Ref | Expression |
|---|---|
| 1st2ndbr | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd 7974 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 2 | simpr 484 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | eqeltrrd 2829 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) |
| 4 | df-br 5093 | . 2 ⊢ ((1st ‘𝐴)𝐵(2nd ‘𝐴) ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 〈cop 4583 class class class wbr 5092 Rel wrel 5624 ‘cfv 6482 1st c1st 7922 2nd c2nd 7923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fv 6490 df-1st 7924 df-2nd 7925 |
| This theorem is referenced by: cofuval 17789 cofu1 17791 cofu2 17793 cofucl 17795 cofuass 17796 cofulid 17797 cofurid 17798 funcres 17803 cofull 17843 cofth 17844 isnat2 17858 fuccocl 17874 fucidcl 17875 fuclid 17876 fucrid 17877 fucass 17878 fucsect 17882 fucinv 17883 invfuc 17884 fuciso 17885 natpropd 17886 fucpropd 17887 homahom 17946 homadm 17947 homacd 17948 homadmcd 17949 catciso 18018 prfval 18105 prfcl 18109 prf1st 18110 prf2nd 18111 1st2ndprf 18112 evlfcllem 18127 evlfcl 18128 curf1cl 18134 curf2cl 18137 curfcl 18138 uncf1 18142 uncf2 18143 curfuncf 18144 uncfcurf 18145 diag1cl 18148 diag2cl 18152 curf2ndf 18153 yon1cl 18169 oyon1cl 18177 yonedalem1 18178 yonedalem21 18179 yonedalem3a 18180 yonedalem4c 18183 yonedalem22 18184 yonedalem3b 18185 yonedalem3 18186 yonedainv 18187 yonffthlem 18188 yoniso 18191 utop2nei 24136 utop3cls 24137 func1st2nd 49071 oppfval2 49132 idfullsubc 49156 fulloppf 49158 fthoppf 49159 up1st2nd2 49183 uptra 49210 uptrar 49211 uptr2a 49217 diag1 49299 fuco11bALT 49333 precofvalALT 49363 thincciso 49448 thincciso2 49450 eufunclem 49516 |
| Copyright terms: Public domain | W3C validator |