| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2ndbr | Structured version Visualization version GIF version | ||
| Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
| Ref | Expression |
|---|---|
| 1st2ndbr | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd 8018 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 2 | simpr 484 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | eqeltrrd 2829 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) |
| 4 | df-br 5108 | . 2 ⊢ ((1st ‘𝐴)𝐵(2nd ‘𝐴) ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 Rel wrel 5643 ‘cfv 6511 1st c1st 7966 2nd c2nd 7967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: cofuval 17844 cofu1 17846 cofu2 17848 cofucl 17850 cofuass 17851 cofulid 17852 cofurid 17853 funcres 17858 cofull 17898 cofth 17899 isnat2 17913 fuccocl 17929 fucidcl 17930 fuclid 17931 fucrid 17932 fucass 17933 fucsect 17937 fucinv 17938 invfuc 17939 fuciso 17940 natpropd 17941 fucpropd 17942 homahom 18001 homadm 18002 homacd 18003 homadmcd 18004 catciso 18073 prfval 18160 prfcl 18164 prf1st 18165 prf2nd 18166 1st2ndprf 18167 evlfcllem 18182 evlfcl 18183 curf1cl 18189 curf2cl 18192 curfcl 18193 uncf1 18197 uncf2 18198 curfuncf 18199 uncfcurf 18200 diag1cl 18203 diag2cl 18207 curf2ndf 18208 yon1cl 18224 oyon1cl 18232 yonedalem1 18233 yonedalem21 18234 yonedalem3a 18235 yonedalem4c 18238 yonedalem22 18239 yonedalem3b 18240 yonedalem3 18241 yonedainv 18242 yonffthlem 18243 yoniso 18246 utop2nei 24138 utop3cls 24139 func1st2nd 49065 oppfval2 49126 idfullsubc 49150 fulloppf 49152 fthoppf 49153 up1st2nd2 49177 uptra 49204 uptrar 49205 uptr2a 49211 diag1 49293 fuco11bALT 49327 precofvalALT 49357 thincciso 49442 thincciso2 49444 eufunclem 49510 |
| Copyright terms: Public domain | W3C validator |