MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2ndbr Structured version   Visualization version   GIF version

Theorem 1st2ndbr 7977
Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
1st2ndbr ((Rel 𝐵𝐴𝐵) → (1st𝐴)𝐵(2nd𝐴))

Proof of Theorem 1st2ndbr
StepHypRef Expression
1 1st2nd 7974 . . 3 ((Rel 𝐵𝐴𝐵) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 simpr 484 . . 3 ((Rel 𝐵𝐴𝐵) → 𝐴𝐵)
31, 2eqeltrrd 2829 . 2 ((Rel 𝐵𝐴𝐵) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝐵)
4 df-br 5093 . 2 ((1st𝐴)𝐵(2nd𝐴) ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝐵)
53, 4sylibr 234 1 ((Rel 𝐵𝐴𝐵) → (1st𝐴)𝐵(2nd𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cop 4583   class class class wbr 5092  Rel wrel 5624  cfv 6482  1st c1st 7922  2nd c2nd 7923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fv 6490  df-1st 7924  df-2nd 7925
This theorem is referenced by:  cofuval  17789  cofu1  17791  cofu2  17793  cofucl  17795  cofuass  17796  cofulid  17797  cofurid  17798  funcres  17803  cofull  17843  cofth  17844  isnat2  17858  fuccocl  17874  fucidcl  17875  fuclid  17876  fucrid  17877  fucass  17878  fucsect  17882  fucinv  17883  invfuc  17884  fuciso  17885  natpropd  17886  fucpropd  17887  homahom  17946  homadm  17947  homacd  17948  homadmcd  17949  catciso  18018  prfval  18105  prfcl  18109  prf1st  18110  prf2nd  18111  1st2ndprf  18112  evlfcllem  18127  evlfcl  18128  curf1cl  18134  curf2cl  18137  curfcl  18138  uncf1  18142  uncf2  18143  curfuncf  18144  uncfcurf  18145  diag1cl  18148  diag2cl  18152  curf2ndf  18153  yon1cl  18169  oyon1cl  18177  yonedalem1  18178  yonedalem21  18179  yonedalem3a  18180  yonedalem4c  18183  yonedalem22  18184  yonedalem3b  18185  yonedalem3  18186  yonedainv  18187  yonffthlem  18188  yoniso  18191  utop2nei  24136  utop3cls  24137  func1st2nd  49071  oppfval2  49132  idfullsubc  49156  fulloppf  49158  fthoppf  49159  up1st2nd2  49183  uptra  49210  uptrar  49211  uptr2a  49217  diag1  49299  fuco11bALT  49333  precofvalALT  49363  thincciso  49448  thincciso2  49450  eufunclem  49516
  Copyright terms: Public domain W3C validator