Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1st2ndbr | Structured version Visualization version GIF version |
Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
1st2ndbr | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd 7853 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | simpr 484 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
3 | 1, 2 | eqeltrrd 2840 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) |
4 | df-br 5071 | . 2 ⊢ ((1st ‘𝐴)𝐵(2nd ‘𝐴) ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 Rel wrel 5585 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: cofuval 17513 cofu1 17515 cofu2 17517 cofucl 17519 cofuass 17520 cofulid 17521 cofurid 17522 funcres 17527 cofull 17566 cofth 17567 isnat2 17580 fuccocl 17598 fucidcl 17599 fuclid 17600 fucrid 17601 fucass 17602 fucsect 17606 fucinv 17607 invfuc 17608 fuciso 17609 natpropd 17610 fucpropd 17611 homahom 17670 homadm 17671 homacd 17672 homadmcd 17673 catciso 17742 prfval 17832 prfcl 17836 prf1st 17837 prf2nd 17838 1st2ndprf 17839 evlfcllem 17855 evlfcl 17856 curf1cl 17862 curf2cl 17865 curfcl 17866 uncf1 17870 uncf2 17871 curfuncf 17872 uncfcurf 17873 diag1cl 17876 diag2cl 17880 curf2ndf 17881 yon1cl 17897 oyon1cl 17905 yonedalem1 17906 yonedalem21 17907 yonedalem3a 17908 yonedalem4c 17911 yonedalem22 17912 yonedalem3b 17913 yonedalem3 17914 yonedainv 17915 yonffthlem 17916 yoniso 17919 utop2nei 23310 utop3cls 23311 thincciso 46218 |
Copyright terms: Public domain | W3C validator |