| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2ndbr | Structured version Visualization version GIF version | ||
| Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
| Ref | Expression |
|---|---|
| 1st2ndbr | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd 7971 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 2 | simpr 484 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | eqeltrrd 2832 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) |
| 4 | df-br 5090 | . 2 ⊢ ((1st ‘𝐴)𝐵(2nd ‘𝐴) ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 Rel wrel 5619 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: cofuval 17789 cofu1 17791 cofu2 17793 cofucl 17795 cofuass 17796 cofulid 17797 cofurid 17798 funcres 17803 cofull 17843 cofth 17844 isnat2 17858 fuccocl 17874 fucidcl 17875 fuclid 17876 fucrid 17877 fucass 17878 fucsect 17882 fucinv 17883 invfuc 17884 fuciso 17885 natpropd 17886 fucpropd 17887 homahom 17946 homadm 17947 homacd 17948 homadmcd 17949 catciso 18018 prfval 18105 prfcl 18109 prf1st 18110 prf2nd 18111 1st2ndprf 18112 evlfcllem 18127 evlfcl 18128 curf1cl 18134 curf2cl 18137 curfcl 18138 uncf1 18142 uncf2 18143 curfuncf 18144 uncfcurf 18145 diag1cl 18148 diag2cl 18152 curf2ndf 18153 yon1cl 18169 oyon1cl 18177 yonedalem1 18178 yonedalem21 18179 yonedalem3a 18180 yonedalem4c 18183 yonedalem22 18184 yonedalem3b 18185 yonedalem3 18186 yonedainv 18187 yonffthlem 18188 yoniso 18191 utop2nei 24165 utop3cls 24166 func1st2nd 49176 oppfval2 49237 idfullsubc 49261 fulloppf 49263 fthoppf 49264 up1st2nd2 49288 uptra 49315 uptrar 49316 uptr2a 49322 diag1 49404 fuco11bALT 49438 precofvalALT 49468 thincciso 49553 thincciso2 49555 eufunclem 49621 |
| Copyright terms: Public domain | W3C validator |