| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2ndbr | Structured version Visualization version GIF version | ||
| Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
| Ref | Expression |
|---|---|
| 1st2ndbr | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd 8021 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 2 | simpr 484 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | eqeltrrd 2830 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) |
| 4 | df-br 5111 | . 2 ⊢ ((1st ‘𝐴)𝐵(2nd ‘𝐴) ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 Rel wrel 5646 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: cofuval 17851 cofu1 17853 cofu2 17855 cofucl 17857 cofuass 17858 cofulid 17859 cofurid 17860 funcres 17865 cofull 17905 cofth 17906 isnat2 17920 fuccocl 17936 fucidcl 17937 fuclid 17938 fucrid 17939 fucass 17940 fucsect 17944 fucinv 17945 invfuc 17946 fuciso 17947 natpropd 17948 fucpropd 17949 homahom 18008 homadm 18009 homacd 18010 homadmcd 18011 catciso 18080 prfval 18167 prfcl 18171 prf1st 18172 prf2nd 18173 1st2ndprf 18174 evlfcllem 18189 evlfcl 18190 curf1cl 18196 curf2cl 18199 curfcl 18200 uncf1 18204 uncf2 18205 curfuncf 18206 uncfcurf 18207 diag1cl 18210 diag2cl 18214 curf2ndf 18215 yon1cl 18231 oyon1cl 18239 yonedalem1 18240 yonedalem21 18241 yonedalem3a 18242 yonedalem4c 18245 yonedalem22 18246 yonedalem3b 18247 yonedalem3 18248 yonedainv 18249 yonffthlem 18250 yoniso 18253 utop2nei 24145 utop3cls 24146 func1st2nd 49069 oppfval2 49130 idfullsubc 49154 fulloppf 49156 fthoppf 49157 up1st2nd2 49181 uptra 49208 uptrar 49209 uptr2a 49215 diag1 49297 fuco11bALT 49331 precofvalALT 49361 thincciso 49446 thincciso2 49448 eufunclem 49514 |
| Copyright terms: Public domain | W3C validator |