![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1st2ndbr | Structured version Visualization version GIF version |
Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
1st2ndbr | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd 8062 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | simpr 484 | . . 3 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
3 | 1, 2 | eqeltrrd 2839 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) |
4 | df-br 5148 | . 2 ⊢ ((1st ‘𝐴)𝐵(2nd ‘𝐴) ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝐵) | |
5 | 3, 4 | sylibr 234 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 〈cop 4636 class class class wbr 5147 Rel wrel 5693 ‘cfv 6562 1st c1st 8010 2nd c2nd 8011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fv 6570 df-1st 8012 df-2nd 8013 |
This theorem is referenced by: cofuval 17932 cofu1 17934 cofu2 17936 cofucl 17938 cofuass 17939 cofulid 17940 cofurid 17941 funcres 17946 cofull 17987 cofth 17988 isnat2 18002 fuccocl 18020 fucidcl 18021 fuclid 18022 fucrid 18023 fucass 18024 fucsect 18028 fucinv 18029 invfuc 18030 fuciso 18031 natpropd 18032 fucpropd 18033 homahom 18092 homadm 18093 homacd 18094 homadmcd 18095 catciso 18164 prfval 18254 prfcl 18258 prf1st 18259 prf2nd 18260 1st2ndprf 18261 evlfcllem 18277 evlfcl 18278 curf1cl 18284 curf2cl 18287 curfcl 18288 uncf1 18292 uncf2 18293 curfuncf 18294 uncfcurf 18295 diag1cl 18298 diag2cl 18302 curf2ndf 18303 yon1cl 18319 oyon1cl 18327 yonedalem1 18328 yonedalem21 18329 yonedalem3a 18330 yonedalem4c 18333 yonedalem22 18334 yonedalem3b 18335 yonedalem3 18336 yonedainv 18337 yonffthlem 18338 yoniso 18341 utop2nei 24274 utop3cls 24275 thincciso 48848 |
Copyright terms: Public domain | W3C validator |