MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnwwlksnon Structured version   Visualization version   GIF version

Theorem wwlksnwwlksnon 28567
Description: A walk of fixed length is a walk of fixed length between two vertices. (Contributed by Alexander van der Vekens, 21-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 13-Mar-2022.)
Hypothesis
Ref Expression
wwlksnwwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlksnwwlksnon (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
Distinct variable groups:   𝐺,𝑎,𝑏   𝑁,𝑎,𝑏   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem wwlksnwwlksnon
StepHypRef Expression
1 wwlknbp1 28496 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
2 wwlksnwwlksnon.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
32eqcomi 2746 . . . . . . . . . 10 (Vtx‘𝐺) = 𝑉
43wrdeqi 14344 . . . . . . . . 9 Word (Vtx‘𝐺) = Word 𝑉
54eleq2i 2829 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) ↔ 𝑊 ∈ Word 𝑉)
65biimpi 215 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉)
763ad2ant2 1134 . . . . . 6 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑊 ∈ Word 𝑉)
8 nn0p1nn 12377 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
9 lbfzo0 13532 . . . . . . . . . 10 (0 ∈ (0..^(𝑁 + 1)) ↔ (𝑁 + 1) ∈ ℕ)
108, 9sylibr 233 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 0 ∈ (0..^(𝑁 + 1)))
11103ad2ant1 1133 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 ∈ (0..^(𝑁 + 1)))
12 oveq2 7349 . . . . . . . . . 10 ((♯‘𝑊) = (𝑁 + 1) → (0..^(♯‘𝑊)) = (0..^(𝑁 + 1)))
1312eleq2d 2823 . . . . . . . . 9 ((♯‘𝑊) = (𝑁 + 1) → (0 ∈ (0..^(♯‘𝑊)) ↔ 0 ∈ (0..^(𝑁 + 1))))
14133ad2ant3 1135 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (0 ∈ (0..^(♯‘𝑊)) ↔ 0 ∈ (0..^(𝑁 + 1))))
1511, 14mpbird 257 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 ∈ (0..^(♯‘𝑊)))
1615adantl 483 . . . . . 6 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → 0 ∈ (0..^(♯‘𝑊)))
17 wrdsymbcl 14334 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → (𝑊‘0) ∈ 𝑉)
187, 16, 17syl2an2 684 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊‘0) ∈ 𝑉)
19 fzonn0p1 13569 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
20193ad2ant1 1133 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑁 ∈ (0..^(𝑁 + 1)))
2112eleq2d 2823 . . . . . . . . 9 ((♯‘𝑊) = (𝑁 + 1) → (𝑁 ∈ (0..^(♯‘𝑊)) ↔ 𝑁 ∈ (0..^(𝑁 + 1))))
22213ad2ant3 1135 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ (0..^(♯‘𝑊)) ↔ 𝑁 ∈ (0..^(𝑁 + 1))))
2320, 22mpbird 257 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑁 ∈ (0..^(♯‘𝑊)))
24 wrdsymbcl 14334 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊𝑁) ∈ 𝑉)
257, 23, 24syl2anc 585 . . . . . 6 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊𝑁) ∈ 𝑉)
2625adantl 483 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊𝑁) ∈ 𝑉)
27 simpl 484 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
28 eqidd 2738 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊‘0) = (𝑊‘0))
29 eqidd 2738 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊𝑁) = (𝑊𝑁))
30 eqeq2 2749 . . . . . . 7 (𝑎 = (𝑊‘0) → ((𝑊‘0) = 𝑎 ↔ (𝑊‘0) = (𝑊‘0)))
31303anbi2d 1441 . . . . . 6 (𝑎 = (𝑊‘0) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = 𝑏)))
32 eqeq2 2749 . . . . . . 7 (𝑏 = (𝑊𝑁) → ((𝑊𝑁) = 𝑏 ↔ (𝑊𝑁) = (𝑊𝑁)))
33323anbi3d 1442 . . . . . 6 (𝑏 = (𝑊𝑁) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = 𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = (𝑊𝑁))))
3431, 33rspc2ev 3584 . . . . 5 (((𝑊‘0) ∈ 𝑉 ∧ (𝑊𝑁) ∈ 𝑉 ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = (𝑊𝑁))) → ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
3518, 26, 27, 28, 29, 34syl113anc 1382 . . . 4 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
361, 35mpdan 685 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
37 simp1 1136 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
3837a1i 11 . . . 4 ((𝑎𝑉𝑏𝑉) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺)))
3938rexlimivv 3193 . . 3 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
4036, 39impbii 208 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
41 wwlknon 28509 . . . 4 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
4241bicomi 223 . . 3 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ↔ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
43422rexbii 3125 . 2 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
4440, 43bitri 275 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wcel 2106  wrex 3071  cfv 6483  (class class class)co 7341  0cc0 10976  1c1 10977   + caddc 10979  cn 12078  0cn0 12338  ..^cfzo 13487  chash 14149  Word cword 14321  Vtxcvtx 27654   WWalksN cwwlksn 28478   WWalksNOn cwwlksnon 28479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-er 8573  df-map 8692  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-nn 12079  df-n0 12339  df-z 12425  df-uz 12688  df-fz 13345  df-fzo 13488  df-hash 14150  df-word 14322  df-wwlks 28482  df-wwlksn 28483  df-wwlksnon 28484
This theorem is referenced by:  wspthsnwspthsnon  28568  elwwlks2  28618
  Copyright terms: Public domain W3C validator