MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnwwlksnon Structured version   Visualization version   GIF version

Theorem wwlksnwwlksnon 29852
Description: A walk of fixed length is a walk of fixed length between two vertices. (Contributed by Alexander van der Vekens, 21-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 13-Mar-2022.)
Hypothesis
Ref Expression
wwlksnwwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlksnwwlksnon (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
Distinct variable groups:   𝐺,𝑎,𝑏   𝑁,𝑎,𝑏   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem wwlksnwwlksnon
StepHypRef Expression
1 wwlknbp1 29781 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
2 wwlksnwwlksnon.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
32eqcomi 2739 . . . . . . . . . 10 (Vtx‘𝐺) = 𝑉
43wrdeqi 14509 . . . . . . . . 9 Word (Vtx‘𝐺) = Word 𝑉
54eleq2i 2821 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) ↔ 𝑊 ∈ Word 𝑉)
65biimpi 216 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉)
763ad2ant2 1134 . . . . . 6 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑊 ∈ Word 𝑉)
8 nn0p1nn 12488 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
9 lbfzo0 13667 . . . . . . . . . 10 (0 ∈ (0..^(𝑁 + 1)) ↔ (𝑁 + 1) ∈ ℕ)
108, 9sylibr 234 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 0 ∈ (0..^(𝑁 + 1)))
11103ad2ant1 1133 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 ∈ (0..^(𝑁 + 1)))
12 oveq2 7398 . . . . . . . . . 10 ((♯‘𝑊) = (𝑁 + 1) → (0..^(♯‘𝑊)) = (0..^(𝑁 + 1)))
1312eleq2d 2815 . . . . . . . . 9 ((♯‘𝑊) = (𝑁 + 1) → (0 ∈ (0..^(♯‘𝑊)) ↔ 0 ∈ (0..^(𝑁 + 1))))
14133ad2ant3 1135 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (0 ∈ (0..^(♯‘𝑊)) ↔ 0 ∈ (0..^(𝑁 + 1))))
1511, 14mpbird 257 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 ∈ (0..^(♯‘𝑊)))
1615adantl 481 . . . . . 6 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → 0 ∈ (0..^(♯‘𝑊)))
17 wrdsymbcl 14499 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → (𝑊‘0) ∈ 𝑉)
187, 16, 17syl2an2 686 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊‘0) ∈ 𝑉)
19 fzonn0p1 13710 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
20193ad2ant1 1133 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑁 ∈ (0..^(𝑁 + 1)))
2112eleq2d 2815 . . . . . . . . 9 ((♯‘𝑊) = (𝑁 + 1) → (𝑁 ∈ (0..^(♯‘𝑊)) ↔ 𝑁 ∈ (0..^(𝑁 + 1))))
22213ad2ant3 1135 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ (0..^(♯‘𝑊)) ↔ 𝑁 ∈ (0..^(𝑁 + 1))))
2320, 22mpbird 257 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑁 ∈ (0..^(♯‘𝑊)))
24 wrdsymbcl 14499 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊𝑁) ∈ 𝑉)
257, 23, 24syl2anc 584 . . . . . 6 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊𝑁) ∈ 𝑉)
2625adantl 481 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊𝑁) ∈ 𝑉)
27 simpl 482 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
28 eqidd 2731 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊‘0) = (𝑊‘0))
29 eqidd 2731 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊𝑁) = (𝑊𝑁))
30 eqeq2 2742 . . . . . . 7 (𝑎 = (𝑊‘0) → ((𝑊‘0) = 𝑎 ↔ (𝑊‘0) = (𝑊‘0)))
31303anbi2d 1443 . . . . . 6 (𝑎 = (𝑊‘0) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = 𝑏)))
32 eqeq2 2742 . . . . . . 7 (𝑏 = (𝑊𝑁) → ((𝑊𝑁) = 𝑏 ↔ (𝑊𝑁) = (𝑊𝑁)))
33323anbi3d 1444 . . . . . 6 (𝑏 = (𝑊𝑁) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = 𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = (𝑊𝑁))))
3431, 33rspc2ev 3604 . . . . 5 (((𝑊‘0) ∈ 𝑉 ∧ (𝑊𝑁) ∈ 𝑉 ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = (𝑊𝑁))) → ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
3518, 26, 27, 28, 29, 34syl113anc 1384 . . . 4 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
361, 35mpdan 687 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
37 simp1 1136 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
3837a1i 11 . . . 4 ((𝑎𝑉𝑏𝑉) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺)))
3938rexlimivv 3180 . . 3 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
4036, 39impbii 209 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
41 wwlknon 29794 . . . 4 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
4241bicomi 224 . . 3 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ↔ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
43422rexbii 3110 . 2 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
4440, 43bitri 275 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  cn 12193  0cn0 12449  ..^cfzo 13622  chash 14302  Word cword 14485  Vtxcvtx 28930   WWalksN cwwlksn 29763   WWalksNOn cwwlksnon 29764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-wwlks 29767  df-wwlksn 29768  df-wwlksnon 29769
This theorem is referenced by:  wspthsnwspthsnon  29853  elwwlks2  29903
  Copyright terms: Public domain W3C validator