MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnwwlksnon Structured version   Visualization version   GIF version

Theorem wwlksnwwlksnon 27704
Description: A walk of fixed length is a walk of fixed length between two vertices. (Contributed by Alexander van der Vekens, 21-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 13-Mar-2022.)
Hypothesis
Ref Expression
wwlksnwwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlksnwwlksnon (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
Distinct variable groups:   𝐺,𝑎,𝑏   𝑁,𝑎,𝑏   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem wwlksnwwlksnon
StepHypRef Expression
1 wwlknbp1 27633 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
2 wwlksnwwlksnon.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
32eqcomi 2810 . . . . . . . . . 10 (Vtx‘𝐺) = 𝑉
43wrdeqi 13884 . . . . . . . . 9 Word (Vtx‘𝐺) = Word 𝑉
54eleq2i 2884 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) ↔ 𝑊 ∈ Word 𝑉)
65biimpi 219 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉)
763ad2ant2 1131 . . . . . 6 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑊 ∈ Word 𝑉)
8 nn0p1nn 11928 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
9 lbfzo0 13076 . . . . . . . . . 10 (0 ∈ (0..^(𝑁 + 1)) ↔ (𝑁 + 1) ∈ ℕ)
108, 9sylibr 237 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 0 ∈ (0..^(𝑁 + 1)))
11103ad2ant1 1130 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 ∈ (0..^(𝑁 + 1)))
12 oveq2 7147 . . . . . . . . . 10 ((♯‘𝑊) = (𝑁 + 1) → (0..^(♯‘𝑊)) = (0..^(𝑁 + 1)))
1312eleq2d 2878 . . . . . . . . 9 ((♯‘𝑊) = (𝑁 + 1) → (0 ∈ (0..^(♯‘𝑊)) ↔ 0 ∈ (0..^(𝑁 + 1))))
14133ad2ant3 1132 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (0 ∈ (0..^(♯‘𝑊)) ↔ 0 ∈ (0..^(𝑁 + 1))))
1511, 14mpbird 260 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 ∈ (0..^(♯‘𝑊)))
1615adantl 485 . . . . . 6 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → 0 ∈ (0..^(♯‘𝑊)))
17 wrdsymbcl 13874 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → (𝑊‘0) ∈ 𝑉)
187, 16, 17syl2an2 685 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊‘0) ∈ 𝑉)
19 fzonn0p1 13113 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
20193ad2ant1 1130 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑁 ∈ (0..^(𝑁 + 1)))
2112eleq2d 2878 . . . . . . . . 9 ((♯‘𝑊) = (𝑁 + 1) → (𝑁 ∈ (0..^(♯‘𝑊)) ↔ 𝑁 ∈ (0..^(𝑁 + 1))))
22213ad2ant3 1132 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ (0..^(♯‘𝑊)) ↔ 𝑁 ∈ (0..^(𝑁 + 1))))
2320, 22mpbird 260 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑁 ∈ (0..^(♯‘𝑊)))
24 wrdsymbcl 13874 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊𝑁) ∈ 𝑉)
257, 23, 24syl2anc 587 . . . . . 6 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊𝑁) ∈ 𝑉)
2625adantl 485 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊𝑁) ∈ 𝑉)
27 simpl 486 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
28 eqidd 2802 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊‘0) = (𝑊‘0))
29 eqidd 2802 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊𝑁) = (𝑊𝑁))
30 eqeq2 2813 . . . . . . 7 (𝑎 = (𝑊‘0) → ((𝑊‘0) = 𝑎 ↔ (𝑊‘0) = (𝑊‘0)))
31303anbi2d 1438 . . . . . 6 (𝑎 = (𝑊‘0) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = 𝑏)))
32 eqeq2 2813 . . . . . . 7 (𝑏 = (𝑊𝑁) → ((𝑊𝑁) = 𝑏 ↔ (𝑊𝑁) = (𝑊𝑁)))
33323anbi3d 1439 . . . . . 6 (𝑏 = (𝑊𝑁) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = 𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = (𝑊𝑁))))
3431, 33rspc2ev 3586 . . . . 5 (((𝑊‘0) ∈ 𝑉 ∧ (𝑊𝑁) ∈ 𝑉 ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = (𝑊𝑁))) → ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
3518, 26, 27, 28, 29, 34syl113anc 1379 . . . 4 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
361, 35mpdan 686 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
37 simp1 1133 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
3837a1i 11 . . . 4 ((𝑎𝑉𝑏𝑉) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺)))
3938rexlimivv 3254 . . 3 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
4036, 39impbii 212 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
41 wwlknon 27646 . . . 4 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
4241bicomi 227 . . 3 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ↔ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
43422rexbii 3214 . 2 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
4440, 43bitri 278 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wrex 3110  cfv 6328  (class class class)co 7139  0cc0 10530  1c1 10531   + caddc 10533  cn 11629  0cn0 11889  ..^cfzo 13032  chash 13690  Word cword 13861  Vtxcvtx 26792   WWalksN cwwlksn 27615   WWalksNOn cwwlksnon 27616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-wwlks 27619  df-wwlksn 27620  df-wwlksnon 27621
This theorem is referenced by:  wspthsnwspthsnon  27705  elwwlks2  27755
  Copyright terms: Public domain W3C validator