Proof of Theorem wwlksnwwlksnon
| Step | Hyp | Ref
| Expression |
| 1 | | wwlknbp1 29864 |
. . . 4
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) |
| 2 | | wwlksnwwlksnon.v |
. . . . . . . . . . 11
⊢ 𝑉 = (Vtx‘𝐺) |
| 3 | 2 | eqcomi 2746 |
. . . . . . . . . 10
⊢
(Vtx‘𝐺) =
𝑉 |
| 4 | 3 | wrdeqi 14575 |
. . . . . . . . 9
⊢ Word
(Vtx‘𝐺) = Word 𝑉 |
| 5 | 4 | eleq2i 2833 |
. . . . . . . 8
⊢ (𝑊 ∈ Word (Vtx‘𝐺) ↔ 𝑊 ∈ Word 𝑉) |
| 6 | 5 | biimpi 216 |
. . . . . . 7
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉) |
| 7 | 6 | 3ad2ant2 1135 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → 𝑊 ∈ Word 𝑉) |
| 8 | | nn0p1nn 12565 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
| 9 | | lbfzo0 13739 |
. . . . . . . . . 10
⊢ (0 ∈
(0..^(𝑁 + 1)) ↔ (𝑁 + 1) ∈
ℕ) |
| 10 | 8, 9 | sylibr 234 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ 0 ∈ (0..^(𝑁 +
1))) |
| 11 | 10 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → 0 ∈
(0..^(𝑁 +
1))) |
| 12 | | oveq2 7439 |
. . . . . . . . . 10
⊢
((♯‘𝑊) =
(𝑁 + 1) →
(0..^(♯‘𝑊)) =
(0..^(𝑁 +
1))) |
| 13 | 12 | eleq2d 2827 |
. . . . . . . . 9
⊢
((♯‘𝑊) =
(𝑁 + 1) → (0 ∈
(0..^(♯‘𝑊))
↔ 0 ∈ (0..^(𝑁 +
1)))) |
| 14 | 13 | 3ad2ant3 1136 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → (0 ∈
(0..^(♯‘𝑊))
↔ 0 ∈ (0..^(𝑁 +
1)))) |
| 15 | 11, 14 | mpbird 257 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → 0 ∈
(0..^(♯‘𝑊))) |
| 16 | 15 | adantl 481 |
. . . . . 6
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → 0 ∈
(0..^(♯‘𝑊))) |
| 17 | | wrdsymbcl 14565 |
. . . . . 6
⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → (𝑊‘0) ∈ 𝑉) |
| 18 | 7, 16, 17 | syl2an2 686 |
. . . . 5
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊‘0) ∈ 𝑉) |
| 19 | | fzonn0p1 13781 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈ (0..^(𝑁 + 1))) |
| 20 | 19 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → 𝑁 ∈ (0..^(𝑁 + 1))) |
| 21 | 12 | eleq2d 2827 |
. . . . . . . . 9
⊢
((♯‘𝑊) =
(𝑁 + 1) → (𝑁 ∈
(0..^(♯‘𝑊))
↔ 𝑁 ∈ (0..^(𝑁 + 1)))) |
| 22 | 21 | 3ad2ant3 1136 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ (0..^(♯‘𝑊)) ↔ 𝑁 ∈ (0..^(𝑁 + 1)))) |
| 23 | 20, 22 | mpbird 257 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → 𝑁 ∈ (0..^(♯‘𝑊))) |
| 24 | | wrdsymbcl 14565 |
. . . . . . 7
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑁) ∈ 𝑉) |
| 25 | 7, 23, 24 | syl2anc 584 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → (𝑊‘𝑁) ∈ 𝑉) |
| 26 | 25 | adantl 481 |
. . . . 5
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊‘𝑁) ∈ 𝑉) |
| 27 | | simpl 482 |
. . . . 5
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → 𝑊 ∈ (𝑁 WWalksN 𝐺)) |
| 28 | | eqidd 2738 |
. . . . 5
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊‘0) = (𝑊‘0)) |
| 29 | | eqidd 2738 |
. . . . 5
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊‘𝑁) = (𝑊‘𝑁)) |
| 30 | | eqeq2 2749 |
. . . . . . 7
⊢ (𝑎 = (𝑊‘0) → ((𝑊‘0) = 𝑎 ↔ (𝑊‘0) = (𝑊‘0))) |
| 31 | 30 | 3anbi2d 1443 |
. . . . . 6
⊢ (𝑎 = (𝑊‘0) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊‘𝑁) = 𝑏))) |
| 32 | | eqeq2 2749 |
. . . . . . 7
⊢ (𝑏 = (𝑊‘𝑁) → ((𝑊‘𝑁) = 𝑏 ↔ (𝑊‘𝑁) = (𝑊‘𝑁))) |
| 33 | 32 | 3anbi3d 1444 |
. . . . . 6
⊢ (𝑏 = (𝑊‘𝑁) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊‘𝑁) = 𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊‘𝑁) = (𝑊‘𝑁)))) |
| 34 | 31, 33 | rspc2ev 3635 |
. . . . 5
⊢ (((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘𝑁) ∈ 𝑉 ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊‘𝑁) = (𝑊‘𝑁))) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏)) |
| 35 | 18, 26, 27, 28, 29, 34 | syl113anc 1384 |
. . . 4
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏)) |
| 36 | 1, 35 | mpdan 687 |
. . 3
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏)) |
| 37 | | simp1 1137 |
. . . . 5
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺)) |
| 38 | 37 | a1i 11 |
. . . 4
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺))) |
| 39 | 38 | rexlimivv 3201 |
. . 3
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺)) |
| 40 | 36, 39 | impbii 209 |
. 2
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏)) |
| 41 | | wwlknon 29877 |
. . . 4
⊢ (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏)) |
| 42 | 41 | bicomi 224 |
. . 3
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) ↔ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) |
| 43 | 42 | 2rexbii 3129 |
. 2
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) |
| 44 | 40, 43 | bitri 275 |
1
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) |