MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnwwlksnon Structured version   Visualization version   GIF version

Theorem wwlksnwwlksnon 28181
Description: A walk of fixed length is a walk of fixed length between two vertices. (Contributed by Alexander van der Vekens, 21-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 13-Mar-2022.)
Hypothesis
Ref Expression
wwlksnwwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlksnwwlksnon (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
Distinct variable groups:   𝐺,𝑎,𝑏   𝑁,𝑎,𝑏   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem wwlksnwwlksnon
StepHypRef Expression
1 wwlknbp1 28110 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
2 wwlksnwwlksnon.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
32eqcomi 2747 . . . . . . . . . 10 (Vtx‘𝐺) = 𝑉
43wrdeqi 14168 . . . . . . . . 9 Word (Vtx‘𝐺) = Word 𝑉
54eleq2i 2830 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) ↔ 𝑊 ∈ Word 𝑉)
65biimpi 215 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉)
763ad2ant2 1132 . . . . . 6 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑊 ∈ Word 𝑉)
8 nn0p1nn 12202 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
9 lbfzo0 13355 . . . . . . . . . 10 (0 ∈ (0..^(𝑁 + 1)) ↔ (𝑁 + 1) ∈ ℕ)
108, 9sylibr 233 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 0 ∈ (0..^(𝑁 + 1)))
11103ad2ant1 1131 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 ∈ (0..^(𝑁 + 1)))
12 oveq2 7263 . . . . . . . . . 10 ((♯‘𝑊) = (𝑁 + 1) → (0..^(♯‘𝑊)) = (0..^(𝑁 + 1)))
1312eleq2d 2824 . . . . . . . . 9 ((♯‘𝑊) = (𝑁 + 1) → (0 ∈ (0..^(♯‘𝑊)) ↔ 0 ∈ (0..^(𝑁 + 1))))
14133ad2ant3 1133 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (0 ∈ (0..^(♯‘𝑊)) ↔ 0 ∈ (0..^(𝑁 + 1))))
1511, 14mpbird 256 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 ∈ (0..^(♯‘𝑊)))
1615adantl 481 . . . . . 6 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → 0 ∈ (0..^(♯‘𝑊)))
17 wrdsymbcl 14158 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → (𝑊‘0) ∈ 𝑉)
187, 16, 17syl2an2 682 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊‘0) ∈ 𝑉)
19 fzonn0p1 13392 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
20193ad2ant1 1131 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑁 ∈ (0..^(𝑁 + 1)))
2112eleq2d 2824 . . . . . . . . 9 ((♯‘𝑊) = (𝑁 + 1) → (𝑁 ∈ (0..^(♯‘𝑊)) ↔ 𝑁 ∈ (0..^(𝑁 + 1))))
22213ad2ant3 1133 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ (0..^(♯‘𝑊)) ↔ 𝑁 ∈ (0..^(𝑁 + 1))))
2320, 22mpbird 256 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑁 ∈ (0..^(♯‘𝑊)))
24 wrdsymbcl 14158 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊𝑁) ∈ 𝑉)
257, 23, 24syl2anc 583 . . . . . 6 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊𝑁) ∈ 𝑉)
2625adantl 481 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊𝑁) ∈ 𝑉)
27 simpl 482 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
28 eqidd 2739 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊‘0) = (𝑊‘0))
29 eqidd 2739 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑊𝑁) = (𝑊𝑁))
30 eqeq2 2750 . . . . . . 7 (𝑎 = (𝑊‘0) → ((𝑊‘0) = 𝑎 ↔ (𝑊‘0) = (𝑊‘0)))
31303anbi2d 1439 . . . . . 6 (𝑎 = (𝑊‘0) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = 𝑏)))
32 eqeq2 2750 . . . . . . 7 (𝑏 = (𝑊𝑁) → ((𝑊𝑁) = 𝑏 ↔ (𝑊𝑁) = (𝑊𝑁)))
33323anbi3d 1440 . . . . . 6 (𝑏 = (𝑊𝑁) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = 𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = (𝑊𝑁))))
3431, 33rspc2ev 3564 . . . . 5 (((𝑊‘0) ∈ 𝑉 ∧ (𝑊𝑁) ∈ 𝑉 ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = (𝑊‘0) ∧ (𝑊𝑁) = (𝑊𝑁))) → ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
3518, 26, 27, 28, 29, 34syl113anc 1380 . . . 4 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
361, 35mpdan 683 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
37 simp1 1134 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
3837a1i 11 . . . 4 ((𝑎𝑉𝑏𝑉) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺)))
3938rexlimivv 3220 . . 3 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
4036, 39impbii 208 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
41 wwlknon 28123 . . . 4 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
4241bicomi 223 . . 3 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ↔ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
43422rexbii 3178 . 2 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
4440, 43bitri 274 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cn 11903  0cn0 12163  ..^cfzo 13311  chash 13972  Word cword 14145  Vtxcvtx 27269   WWalksN cwwlksn 28092   WWalksNOn cwwlksnon 28093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-wwlks 28096  df-wwlksn 28097  df-wwlksnon 28098
This theorem is referenced by:  wspthsnwspthsnon  28182  elwwlks2  28232
  Copyright terms: Public domain W3C validator