MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdom Structured version   Visualization version   GIF version

Theorem 1sdom 9282
Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 9069.) (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-un 7754. (Revised by BTernaryTau, 30-Dec-2024.)
Assertion
Ref Expression
1sdom (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem 1sdom
StepHypRef Expression
1 1sdom2dom 9281 . 2 (1o𝐴 ↔ 2o𝐴)
2 2dom 9069 . . 3 (2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
3 df-ne 2939 . . . . . 6 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
432rexbii 3127 . . . . 5 (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
5 rex2dom 9280 . . . . 5 ((𝐴𝑉 ∧ ∃𝑥𝐴𝑦𝐴 𝑥𝑦) → 2o𝐴)
64, 5sylan2br 595 . . . 4 ((𝐴𝑉 ∧ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦) → 2o𝐴)
76ex 412 . . 3 (𝐴𝑉 → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 → 2o𝐴))
82, 7impbid2 226 . 2 (𝐴𝑉 → (2o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
91, 8bitrid 283 1 (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  1oc1o 8498  2oc2o 8499  cdom 8982  csdm 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-1o 8505  df-2o 8506  df-en 8985  df-dom 8986  df-sdom 8987
This theorem is referenced by:  unxpdomlem3  9286  frgpnabl  19908  isnzr2  20535
  Copyright terms: Public domain W3C validator