![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1sdom | Structured version Visualization version GIF version |
Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 9030.) (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-un 7725. (Revised by BTernaryTau, 30-Dec-2024.) |
Ref | Expression |
---|---|
1sdom | ⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1sdom2dom 9247 | . 2 ⊢ (1o ≺ 𝐴 ↔ 2o ≼ 𝐴) | |
2 | 2dom 9030 | . . 3 ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) | |
3 | df-ne 2942 | . . . . . 6 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
4 | 3 | 2rexbii 3130 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
5 | rex2dom 9246 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) | |
6 | 4, 5 | sylan2br 596 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) → 2o ≼ 𝐴) |
7 | 6 | ex 414 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 → 2o ≼ 𝐴)) |
8 | 2, 7 | impbid2 225 | . 2 ⊢ (𝐴 ∈ 𝑉 → (2o ≼ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) |
9 | 1, 8 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2107 ≠ wne 2941 ∃wrex 3071 class class class wbr 5149 1oc1o 8459 2oc2o 8460 ≼ cdom 8937 ≺ csdm 8938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-1o 8466 df-2o 8467 df-en 8940 df-dom 8941 df-sdom 8942 |
This theorem is referenced by: unxpdomlem3 9252 frgpnabl 19743 isnzr2 20297 |
Copyright terms: Public domain | W3C validator |