MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdom Structured version   Visualization version   GIF version

Theorem 1sdom 8451
Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 8314.) (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
1sdom (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem 1sdom
Dummy variables 𝑓 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4890 . 2 (𝑎 = 𝐴 → (1o𝑎 ↔ 1o𝐴))
2 rexeq 3331 . . 3 (𝑎 = 𝐴 → (∃𝑦𝑎 ¬ 𝑥 = 𝑦 ↔ ∃𝑦𝐴 ¬ 𝑥 = 𝑦))
32rexeqbi1dv 3329 . 2 (𝑎 = 𝐴 → (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
4 1onn 8003 . . . 4 1o ∈ ω
5 sucdom 8445 . . . 4 (1o ∈ ω → (1o𝑎 ↔ suc 1o𝑎))
64, 5ax-mp 5 . . 3 (1o𝑎 ↔ suc 1o𝑎)
7 df-2o 7844 . . . 4 2o = suc 1o
87breq1i 4893 . . 3 (2o𝑎 ↔ suc 1o𝑎)
9 2dom 8314 . . . 4 (2o𝑎 → ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
10 df2o3 7857 . . . . 5 2o = {∅, 1o}
11 vex 3401 . . . . . . . . . . . 12 𝑥 ∈ V
12 vex 3401 . . . . . . . . . . . 12 𝑦 ∈ V
13 0ex 5026 . . . . . . . . . . . 12 ∅ ∈ V
14 1oex 7851 . . . . . . . . . . . 12 1o ∈ V
1511, 12, 13, 14funpr 6190 . . . . . . . . . . 11 (𝑥𝑦 → Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩})
16 df-ne 2970 . . . . . . . . . . 11 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
17 1n0 7859 . . . . . . . . . . . . . . 15 1o ≠ ∅
1817necomi 3023 . . . . . . . . . . . . . 14 ∅ ≠ 1o
1913, 14, 11, 12fpr 6687 . . . . . . . . . . . . . 14 (∅ ≠ 1o → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}⟶{𝑥, 𝑦})
2018, 19ax-mp 5 . . . . . . . . . . . . 13 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}⟶{𝑥, 𝑦}
21 df-f1 6140 . . . . . . . . . . . . 13 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦} ↔ ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}⟶{𝑥, 𝑦} ∧ Fun {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
2220, 21mpbiran 699 . . . . . . . . . . . 12 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦} ↔ Fun {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
2313, 11cnvsn 5873 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩} = {⟨𝑥, ∅⟩}
2414, 12cnvsn 5873 . . . . . . . . . . . . . . 15 {⟨1o, 𝑦⟩} = {⟨𝑦, 1o⟩}
2523, 24uneq12i 3988 . . . . . . . . . . . . . 14 ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩}) = ({⟨𝑥, ∅⟩} ∪ {⟨𝑦, 1o⟩})
26 df-pr 4401 . . . . . . . . . . . . . . . 16 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
2726cnveqi 5542 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
28 cnvun 5792 . . . . . . . . . . . . . . 15 ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩}) = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
2927, 28eqtri 2802 . . . . . . . . . . . . . 14 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
30 df-pr 4401 . . . . . . . . . . . . . 14 {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩} = ({⟨𝑥, ∅⟩} ∪ {⟨𝑦, 1o⟩})
3125, 29, 303eqtr4i 2812 . . . . . . . . . . . . 13 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩}
3231funeqi 6156 . . . . . . . . . . . 12 (Fun {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ↔ Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩})
3322, 32bitr2i 268 . . . . . . . . . . 11 (Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩} ↔ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦})
3415, 16, 333imtr3i 283 . . . . . . . . . 10 𝑥 = 𝑦 → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦})
35 prssi 4583 . . . . . . . . . 10 ((𝑥𝑎𝑦𝑎) → {𝑥, 𝑦} ⊆ 𝑎)
36 f1ss 6356 . . . . . . . . . 10 (({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑎) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎)
3734, 35, 36syl2an 589 . . . . . . . . 9 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎)
38 prex 5141 . . . . . . . . . 10 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ V
39 f1eq1 6346 . . . . . . . . . 10 (𝑓 = {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} → (𝑓:{∅, 1o}–1-1𝑎 ↔ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎))
4038, 39spcev 3502 . . . . . . . . 9 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎 → ∃𝑓 𝑓:{∅, 1o}–1-1𝑎)
4137, 40syl 17 . . . . . . . 8 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → ∃𝑓 𝑓:{∅, 1o}–1-1𝑎)
42 vex 3401 . . . . . . . . 9 𝑎 ∈ V
4342brdom 8253 . . . . . . . 8 ({∅, 1o} ≼ 𝑎 ↔ ∃𝑓 𝑓:{∅, 1o}–1-1𝑎)
4441, 43sylibr 226 . . . . . . 7 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → {∅, 1o} ≼ 𝑎)
4544expcom 404 . . . . . 6 ((𝑥𝑎𝑦𝑎) → (¬ 𝑥 = 𝑦 → {∅, 1o} ≼ 𝑎))
4645rexlimivv 3219 . . . . 5 (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 → {∅, 1o} ≼ 𝑎)
4710, 46syl5eqbr 4921 . . . 4 (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 → 2o𝑎)
489, 47impbii 201 . . 3 (2o𝑎 ↔ ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
496, 8, 483bitr2i 291 . 2 (1o𝑎 ↔ ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
501, 3, 49vtoclbg 3468 1 (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wex 1823  wcel 2107  wne 2969  wrex 3091  cun 3790  wss 3792  c0 4141  {csn 4398  {cpr 4400  cop 4404   class class class wbr 4886  ccnv 5354  suc csuc 5978  Fun wfun 6129  wf 6131  1-1wf1 6132  ωcom 7343  1oc1o 7836  2oc2o 7837  cdom 8239  csdm 8240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-om 7344  df-1o 7843  df-2o 7844  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244
This theorem is referenced by:  unxpdomlem3  8454  frgpnabl  18664  isnzr2  19660
  Copyright terms: Public domain W3C validator