MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdom Structured version   Visualization version   GIF version

Theorem 1sdom 9192
Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 8974.) (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-un 7672. (Revised by BTernaryTau, 30-Dec-2024.)
Assertion
Ref Expression
1sdom (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem 1sdom
StepHypRef Expression
1 1sdom2dom 9191 . 2 (1o𝐴 ↔ 2o𝐴)
2 2dom 8974 . . 3 (2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
3 df-ne 2944 . . . . . 6 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
432rexbii 3128 . . . . 5 (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
5 rex2dom 9190 . . . . 5 ((𝐴𝑉 ∧ ∃𝑥𝐴𝑦𝐴 𝑥𝑦) → 2o𝐴)
64, 5sylan2br 595 . . . 4 ((𝐴𝑉 ∧ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦) → 2o𝐴)
76ex 413 . . 3 (𝐴𝑉 → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 → 2o𝐴))
82, 7impbid2 225 . 2 (𝐴𝑉 → (2o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
91, 8bitrid 282 1 (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wcel 2106  wne 2943  wrex 3073   class class class wbr 5105  1oc1o 8405  2oc2o 8406  cdom 8881  csdm 8882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-1o 8412  df-2o 8413  df-en 8884  df-dom 8885  df-sdom 8886
This theorem is referenced by:  unxpdomlem3  9196  frgpnabl  19653  isnzr2  20733
  Copyright terms: Public domain W3C validator