MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdom Structured version   Visualization version   GIF version

Theorem 1sdom 8955
Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 8774.) (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
1sdom (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem 1sdom
Dummy variables 𝑓 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5074 . 2 (𝑎 = 𝐴 → (1o𝑎 ↔ 1o𝐴))
2 rexeq 3334 . . 3 (𝑎 = 𝐴 → (∃𝑦𝑎 ¬ 𝑥 = 𝑦 ↔ ∃𝑦𝐴 ¬ 𝑥 = 𝑦))
32rexeqbi1dv 3332 . 2 (𝑎 = 𝐴 → (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
4 1onn 8432 . . . 4 1o ∈ ω
5 sucdom 8949 . . . 4 (1o ∈ ω → (1o𝑎 ↔ suc 1o𝑎))
64, 5ax-mp 5 . . 3 (1o𝑎 ↔ suc 1o𝑎)
7 df-2o 8268 . . . 4 2o = suc 1o
87breq1i 5077 . . 3 (2o𝑎 ↔ suc 1o𝑎)
9 2dom 8774 . . . 4 (2o𝑎 → ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
10 df2o3 8282 . . . . 5 2o = {∅, 1o}
11 vex 3426 . . . . . . . . . . . 12 𝑥 ∈ V
12 vex 3426 . . . . . . . . . . . 12 𝑦 ∈ V
13 0ex 5226 . . . . . . . . . . . 12 ∅ ∈ V
14 1oex 8280 . . . . . . . . . . . 12 1o ∈ V
1511, 12, 13, 14funpr 6474 . . . . . . . . . . 11 (𝑥𝑦 → Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩})
16 df-ne 2943 . . . . . . . . . . 11 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
17 1n0 8286 . . . . . . . . . . . . . . 15 1o ≠ ∅
1817necomi 2997 . . . . . . . . . . . . . 14 ∅ ≠ 1o
1913, 14, 11, 12fpr 7008 . . . . . . . . . . . . . 14 (∅ ≠ 1o → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}⟶{𝑥, 𝑦})
2018, 19ax-mp 5 . . . . . . . . . . . . 13 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}⟶{𝑥, 𝑦}
21 df-f1 6423 . . . . . . . . . . . . 13 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦} ↔ ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}⟶{𝑥, 𝑦} ∧ Fun {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
2220, 21mpbiran 705 . . . . . . . . . . . 12 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦} ↔ Fun {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
2313, 11cnvsn 6118 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩} = {⟨𝑥, ∅⟩}
2414, 12cnvsn 6118 . . . . . . . . . . . . . . 15 {⟨1o, 𝑦⟩} = {⟨𝑦, 1o⟩}
2523, 24uneq12i 4091 . . . . . . . . . . . . . 14 ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩}) = ({⟨𝑥, ∅⟩} ∪ {⟨𝑦, 1o⟩})
26 df-pr 4561 . . . . . . . . . . . . . . . 16 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
2726cnveqi 5772 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
28 cnvun 6035 . . . . . . . . . . . . . . 15 ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩}) = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
2927, 28eqtri 2766 . . . . . . . . . . . . . 14 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
30 df-pr 4561 . . . . . . . . . . . . . 14 {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩} = ({⟨𝑥, ∅⟩} ∪ {⟨𝑦, 1o⟩})
3125, 29, 303eqtr4i 2776 . . . . . . . . . . . . 13 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩}
3231funeqi 6439 . . . . . . . . . . . 12 (Fun {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ↔ Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩})
3322, 32bitr2i 275 . . . . . . . . . . 11 (Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩} ↔ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦})
3415, 16, 333imtr3i 290 . . . . . . . . . 10 𝑥 = 𝑦 → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦})
35 prssi 4751 . . . . . . . . . 10 ((𝑥𝑎𝑦𝑎) → {𝑥, 𝑦} ⊆ 𝑎)
36 f1ss 6660 . . . . . . . . . 10 (({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑎) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎)
3734, 35, 36syl2an 595 . . . . . . . . 9 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎)
38 prex 5350 . . . . . . . . . 10 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ V
39 f1eq1 6649 . . . . . . . . . 10 (𝑓 = {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} → (𝑓:{∅, 1o}–1-1𝑎 ↔ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎))
4038, 39spcev 3535 . . . . . . . . 9 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎 → ∃𝑓 𝑓:{∅, 1o}–1-1𝑎)
4137, 40syl 17 . . . . . . . 8 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → ∃𝑓 𝑓:{∅, 1o}–1-1𝑎)
42 vex 3426 . . . . . . . . 9 𝑎 ∈ V
4342brdom 8705 . . . . . . . 8 ({∅, 1o} ≼ 𝑎 ↔ ∃𝑓 𝑓:{∅, 1o}–1-1𝑎)
4441, 43sylibr 233 . . . . . . 7 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → {∅, 1o} ≼ 𝑎)
4544expcom 413 . . . . . 6 ((𝑥𝑎𝑦𝑎) → (¬ 𝑥 = 𝑦 → {∅, 1o} ≼ 𝑎))
4645rexlimivv 3220 . . . . 5 (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 → {∅, 1o} ≼ 𝑎)
4710, 46eqbrtrid 5105 . . . 4 (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 → 2o𝑎)
489, 47impbii 208 . . 3 (2o𝑎 ↔ ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
496, 8, 483bitr2i 298 . 2 (1o𝑎 ↔ ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
501, 3, 49vtoclbg 3497 1 (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wex 1783  wcel 2108  wne 2942  wrex 3064  cun 3881  wss 3883  c0 4253  {csn 4558  {cpr 4560  cop 4564   class class class wbr 5070  ccnv 5579  suc csuc 6253  Fun wfun 6412  wf 6414  1-1wf1 6415  ωcom 7687  1oc1o 8260  2oc2o 8261  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694
This theorem is referenced by:  unxpdomlem3  8958  frgpnabl  19391  isnzr2  20447
  Copyright terms: Public domain W3C validator