MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdom Structured version   Visualization version   GIF version

Theorem 1sdom 9202
Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 9004.) (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-un 7714. (Revised by BTernaryTau, 30-Dec-2024.)
Assertion
Ref Expression
1sdom (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem 1sdom
StepHypRef Expression
1 1sdom2dom 9201 . 2 (1o𝐴 ↔ 2o𝐴)
2 2dom 9004 . . 3 (2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
3 df-ne 2927 . . . . . 6 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
432rexbii 3110 . . . . 5 (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
5 rex2dom 9200 . . . . 5 ((𝐴𝑉 ∧ ∃𝑥𝐴𝑦𝐴 𝑥𝑦) → 2o𝐴)
64, 5sylan2br 595 . . . 4 ((𝐴𝑉 ∧ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦) → 2o𝐴)
76ex 412 . . 3 (𝐴𝑉 → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 → 2o𝐴))
82, 7impbid2 226 . 2 (𝐴𝑉 → (2o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
91, 8bitrid 283 1 (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  1oc1o 8430  2oc2o 8431  cdom 8919  csdm 8920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-1o 8437  df-2o 8438  df-en 8922  df-dom 8923  df-sdom 8924
This theorem is referenced by:  unxpdomlem3  9206  frgpnabl  19812  isnzr2  20434
  Copyright terms: Public domain W3C validator