![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1sdom | Structured version Visualization version GIF version |
Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 8974.) (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-un 7672. (Revised by BTernaryTau, 30-Dec-2024.) |
Ref | Expression |
---|---|
1sdom | ⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1sdom2dom 9191 | . 2 ⊢ (1o ≺ 𝐴 ↔ 2o ≼ 𝐴) | |
2 | 2dom 8974 | . . 3 ⊢ (2o ≼ 𝐴 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) | |
3 | df-ne 2944 | . . . . . 6 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
4 | 3 | 2rexbii 3128 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) |
5 | rex2dom 9190 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) | |
6 | 4, 5 | sylan2br 595 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦) → 2o ≼ 𝐴) |
7 | 6 | ex 413 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 → 2o ≼ 𝐴)) |
8 | 2, 7 | impbid2 225 | . 2 ⊢ (𝐴 ∈ 𝑉 → (2o ≼ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) |
9 | 1, 8 | bitrid 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3073 class class class wbr 5105 1oc1o 8405 2oc2o 8406 ≼ cdom 8881 ≺ csdm 8882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pr 5384 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2944 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-1o 8412 df-2o 8413 df-en 8884 df-dom 8885 df-sdom 8886 |
This theorem is referenced by: unxpdomlem3 9196 frgpnabl 19653 isnzr2 20733 |
Copyright terms: Public domain | W3C validator |