MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdom Structured version   Visualization version   GIF version

Theorem 1sdom 9171
Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 8978.) (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-un 7691. (Revised by BTernaryTau, 30-Dec-2024.)
Assertion
Ref Expression
1sdom (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem 1sdom
StepHypRef Expression
1 1sdom2dom 9170 . 2 (1o𝐴 ↔ 2o𝐴)
2 2dom 8978 . . 3 (2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
3 df-ne 2926 . . . . . 6 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
432rexbii 3109 . . . . 5 (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
5 rex2dom 9169 . . . . 5 ((𝐴𝑉 ∧ ∃𝑥𝐴𝑦𝐴 𝑥𝑦) → 2o𝐴)
64, 5sylan2br 595 . . . 4 ((𝐴𝑉 ∧ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦) → 2o𝐴)
76ex 412 . . 3 (𝐴𝑉 → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 → 2o𝐴))
82, 7impbid2 226 . 2 (𝐴𝑉 → (2o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
91, 8bitrid 283 1 (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102  1oc1o 8404  2oc2o 8405  cdom 8893  csdm 8894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1o 8411  df-2o 8412  df-en 8896  df-dom 8897  df-sdom 8898
This theorem is referenced by:  unxpdomlem3  9175  frgpnabl  19781  isnzr2  20403
  Copyright terms: Public domain W3C validator