Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn3 Structured version   Visualization version   GIF version

Theorem cvrnbtwn3 38752
Description: The covers relation implies no in-betweenness. (cvnbtwn3 32116 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
cvrletr.b 𝐵 = (Base‘𝐾)
cvrletr.l = (le‘𝐾)
cvrletr.s < = (lt‘𝐾)
cvrletr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnbtwn3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 < 𝑌) ↔ 𝑋 = 𝑍))

Proof of Theorem cvrnbtwn3
StepHypRef Expression
1 cvrletr.b . . . 4 𝐵 = (Base‘𝐾)
2 cvrletr.s . . . 4 < = (lt‘𝐾)
3 cvrletr.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrnbtwn 38747 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌))
5 cvrletr.l . . . . . . . . 9 = (le‘𝐾)
65, 2pltval 18329 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑍𝐵) → (𝑋 < 𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
763adant3r2 1180 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
873adant3 1129 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 < 𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
98anbi1d 629 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌)))
109notbid 317 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (¬ (𝑋 < 𝑍𝑍 < 𝑌) ↔ ¬ ((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌)))
11 an32 644 . . . . . . 7 (((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑍 < 𝑌) ∧ 𝑋𝑍))
12 df-ne 2937 . . . . . . . 8 (𝑋𝑍 ↔ ¬ 𝑋 = 𝑍)
1312anbi2i 621 . . . . . . 7 (((𝑋 𝑍𝑍 < 𝑌) ∧ 𝑋𝑍) ↔ ((𝑋 𝑍𝑍 < 𝑌) ∧ ¬ 𝑋 = 𝑍))
1411, 13bitri 274 . . . . . 6 (((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑍 < 𝑌) ∧ ¬ 𝑋 = 𝑍))
1514notbii 319 . . . . 5 (¬ ((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌) ↔ ¬ ((𝑋 𝑍𝑍 < 𝑌) ∧ ¬ 𝑋 = 𝑍))
16 iman 400 . . . . 5 (((𝑋 𝑍𝑍 < 𝑌) → 𝑋 = 𝑍) ↔ ¬ ((𝑋 𝑍𝑍 < 𝑌) ∧ ¬ 𝑋 = 𝑍))
1715, 16bitr4i 277 . . . 4 (¬ ((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑍 < 𝑌) → 𝑋 = 𝑍))
1810, 17bitrdi 286 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (¬ (𝑋 < 𝑍𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑍 < 𝑌) → 𝑋 = 𝑍)))
194, 18mpbid 231 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 < 𝑌) → 𝑋 = 𝑍))
201, 5posref 18315 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
21 breq2 5154 . . . . . 6 (𝑋 = 𝑍 → (𝑋 𝑋𝑋 𝑍))
2220, 21syl5ibcom 244 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 = 𝑍𝑋 𝑍))
23223ad2antr1 1185 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑍𝑋 𝑍))
24233adant3 1129 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍𝑋 𝑍))
25 simp1 1133 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝐾 ∈ Poset)
26 simp21 1203 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋𝐵)
27 simp22 1204 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑌𝐵)
28 simp3 1135 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋𝐶𝑌)
291, 2, 3cvrlt 38746 . . . . 5 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
3025, 26, 27, 28, 29syl31anc 1370 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
31 breq1 5153 . . . 4 (𝑋 = 𝑍 → (𝑋 < 𝑌𝑍 < 𝑌))
3230, 31syl5ibcom 244 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍𝑍 < 𝑌))
3324, 32jcad 511 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍 → (𝑋 𝑍𝑍 < 𝑌)))
3419, 33impbid 211 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 < 𝑌) ↔ 𝑋 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2936   class class class wbr 5150  cfv 6551  Basecbs 17185  lecple 17245  Posetcpo 18304  ltcplt 18305  ccvr 38738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-iota 6503  df-fun 6553  df-fv 6559  df-proset 18292  df-poset 18310  df-plt 18327  df-covers 38742
This theorem is referenced by:  atcvreq0  38790  cvratlem  38898
  Copyright terms: Public domain W3C validator