Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn3 Structured version   Visualization version   GIF version

Theorem cvrnbtwn3 35253
Description: The covers relation implies no in-betweenness. (cvnbtwn3 29624 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
cvrletr.b 𝐵 = (Base‘𝐾)
cvrletr.l = (le‘𝐾)
cvrletr.s < = (lt‘𝐾)
cvrletr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnbtwn3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 < 𝑌) ↔ 𝑋 = 𝑍))

Proof of Theorem cvrnbtwn3
StepHypRef Expression
1 cvrletr.b . . . 4 𝐵 = (Base‘𝐾)
2 cvrletr.s . . . 4 < = (lt‘𝐾)
3 cvrletr.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrnbtwn 35248 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌))
5 cvrletr.l . . . . . . . . 9 = (le‘𝐾)
65, 2pltval 17240 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑍𝐵) → (𝑋 < 𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
763adant3r2 1234 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
873adant3 1162 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 < 𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
98anbi1d 623 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌)))
109notbid 309 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (¬ (𝑋 < 𝑍𝑍 < 𝑌) ↔ ¬ ((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌)))
11 an32 636 . . . . . . 7 (((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑍 < 𝑌) ∧ 𝑋𝑍))
12 df-ne 2938 . . . . . . . 8 (𝑋𝑍 ↔ ¬ 𝑋 = 𝑍)
1312anbi2i 616 . . . . . . 7 (((𝑋 𝑍𝑍 < 𝑌) ∧ 𝑋𝑍) ↔ ((𝑋 𝑍𝑍 < 𝑌) ∧ ¬ 𝑋 = 𝑍))
1411, 13bitri 266 . . . . . 6 (((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑍 < 𝑌) ∧ ¬ 𝑋 = 𝑍))
1514notbii 311 . . . . 5 (¬ ((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌) ↔ ¬ ((𝑋 𝑍𝑍 < 𝑌) ∧ ¬ 𝑋 = 𝑍))
16 iman 390 . . . . 5 (((𝑋 𝑍𝑍 < 𝑌) → 𝑋 = 𝑍) ↔ ¬ ((𝑋 𝑍𝑍 < 𝑌) ∧ ¬ 𝑋 = 𝑍))
1715, 16bitr4i 269 . . . 4 (¬ ((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑍 < 𝑌) → 𝑋 = 𝑍))
1810, 17syl6bb 278 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (¬ (𝑋 < 𝑍𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑍 < 𝑌) → 𝑋 = 𝑍)))
194, 18mpbid 223 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 < 𝑌) → 𝑋 = 𝑍))
201, 5posref 17231 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
21 breq2 4815 . . . . . 6 (𝑋 = 𝑍 → (𝑋 𝑋𝑋 𝑍))
2220, 21syl5ibcom 236 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 = 𝑍𝑋 𝑍))
23223ad2antr1 1239 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑍𝑋 𝑍))
24233adant3 1162 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍𝑋 𝑍))
25 simp1 1166 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝐾 ∈ Poset)
26 simp21 1263 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋𝐵)
27 simp22 1264 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑌𝐵)
28 simp3 1168 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋𝐶𝑌)
291, 2, 3cvrlt 35247 . . . . 5 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
3025, 26, 27, 28, 29syl31anc 1492 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
31 breq1 4814 . . . 4 (𝑋 = 𝑍 → (𝑋 < 𝑌𝑍 < 𝑌))
3230, 31syl5ibcom 236 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍𝑍 < 𝑌))
3324, 32jcad 508 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍 → (𝑋 𝑍𝑍 < 𝑌)))
3419, 33impbid 203 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 < 𝑌) ↔ 𝑋 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937   class class class wbr 4811  cfv 6070  Basecbs 16144  lecple 16235  Posetcpo 17220  ltcplt 17221  ccvr 35239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-iota 6033  df-fun 6072  df-fv 6078  df-proset 17208  df-poset 17226  df-plt 17238  df-covers 35243
This theorem is referenced by:  atcvreq0  35291  cvratlem  35398
  Copyright terms: Public domain W3C validator