Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn3 Structured version   Visualization version   GIF version

Theorem cvrnbtwn3 39258
Description: The covers relation implies no in-betweenness. (cvnbtwn3 32317 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
cvrletr.b 𝐵 = (Base‘𝐾)
cvrletr.l = (le‘𝐾)
cvrletr.s < = (lt‘𝐾)
cvrletr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnbtwn3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 < 𝑌) ↔ 𝑋 = 𝑍))

Proof of Theorem cvrnbtwn3
StepHypRef Expression
1 cvrletr.b . . . 4 𝐵 = (Base‘𝐾)
2 cvrletr.s . . . 4 < = (lt‘𝐾)
3 cvrletr.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrnbtwn 39253 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌))
5 cvrletr.l . . . . . . . . 9 = (le‘𝐾)
65, 2pltval 18390 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑍𝐵) → (𝑋 < 𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
763adant3r2 1182 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
873adant3 1131 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 < 𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
98anbi1d 631 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌)))
109notbid 318 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (¬ (𝑋 < 𝑍𝑍 < 𝑌) ↔ ¬ ((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌)))
11 an32 646 . . . . . . 7 (((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑍 < 𝑌) ∧ 𝑋𝑍))
12 df-ne 2939 . . . . . . . 8 (𝑋𝑍 ↔ ¬ 𝑋 = 𝑍)
1312anbi2i 623 . . . . . . 7 (((𝑋 𝑍𝑍 < 𝑌) ∧ 𝑋𝑍) ↔ ((𝑋 𝑍𝑍 < 𝑌) ∧ ¬ 𝑋 = 𝑍))
1411, 13bitri 275 . . . . . 6 (((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑍 < 𝑌) ∧ ¬ 𝑋 = 𝑍))
1514notbii 320 . . . . 5 (¬ ((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌) ↔ ¬ ((𝑋 𝑍𝑍 < 𝑌) ∧ ¬ 𝑋 = 𝑍))
16 iman 401 . . . . 5 (((𝑋 𝑍𝑍 < 𝑌) → 𝑋 = 𝑍) ↔ ¬ ((𝑋 𝑍𝑍 < 𝑌) ∧ ¬ 𝑋 = 𝑍))
1715, 16bitr4i 278 . . . 4 (¬ ((𝑋 𝑍𝑋𝑍) ∧ 𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑍 < 𝑌) → 𝑋 = 𝑍))
1810, 17bitrdi 287 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (¬ (𝑋 < 𝑍𝑍 < 𝑌) ↔ ((𝑋 𝑍𝑍 < 𝑌) → 𝑋 = 𝑍)))
194, 18mpbid 232 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 < 𝑌) → 𝑋 = 𝑍))
201, 5posref 18376 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
21 breq2 5152 . . . . . 6 (𝑋 = 𝑍 → (𝑋 𝑋𝑋 𝑍))
2220, 21syl5ibcom 245 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 = 𝑍𝑋 𝑍))
23223ad2antr1 1187 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑍𝑋 𝑍))
24233adant3 1131 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍𝑋 𝑍))
25 simp1 1135 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝐾 ∈ Poset)
26 simp21 1205 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋𝐵)
27 simp22 1206 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑌𝐵)
28 simp3 1137 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋𝐶𝑌)
291, 2, 3cvrlt 39252 . . . . 5 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
3025, 26, 27, 28, 29syl31anc 1372 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
31 breq1 5151 . . . 4 (𝑋 = 𝑍 → (𝑋 < 𝑌𝑍 < 𝑌))
3230, 31syl5ibcom 245 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍𝑍 < 𝑌))
3324, 32jcad 512 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍 → (𝑋 𝑍𝑍 < 𝑌)))
3419, 33impbid 212 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 < 𝑌) ↔ 𝑋 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  Basecbs 17245  lecple 17305  Posetcpo 18365  ltcplt 18366  ccvr 39244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-proset 18352  df-poset 18371  df-plt 18388  df-covers 39248
This theorem is referenced by:  atcvreq0  39296  cvratlem  39404
  Copyright terms: Public domain W3C validator