MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latledi Structured version   Visualization version   GIF version

Theorem latledi 17698
Description: An ortholattice is distributive in one ordering direction. (ledi 29316 analog.) (Contributed by NM, 7-Nov-2011.)
Hypotheses
Ref Expression
latledi.b 𝐵 = (Base‘𝐾)
latledi.l = (le‘𝐾)
latledi.j = (join‘𝐾)
latledi.m = (meet‘𝐾)
Assertion
Ref Expression
latledi ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) (𝑋 (𝑌 𝑍)))

Proof of Theorem latledi
StepHypRef Expression
1 latledi.b . . . . 5 𝐵 = (Base‘𝐾)
2 latledi.l . . . . 5 = (le‘𝐾)
3 latledi.m . . . . 5 = (meet‘𝐾)
41, 2, 3latmle1 17685 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
543adant3r3 1180 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) 𝑋)
61, 2, 3latmle1 17685 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) 𝑋)
763adant3r2 1179 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) 𝑋)
81, 3latmcl 17661 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
983adant3r3 1180 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
101, 3latmcl 17661 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
11103adant3r2 1179 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) ∈ 𝐵)
12 simpr1 1190 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
139, 11, 123jca 1124 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑍) ∈ 𝐵𝑋𝐵))
14 latledi.j . . . . 5 = (join‘𝐾)
151, 2, 14latjle12 17671 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑍) ∈ 𝐵𝑋𝐵)) → (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑍) 𝑋) ↔ ((𝑋 𝑌) (𝑋 𝑍)) 𝑋))
1613, 15syldan 593 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑍) 𝑋) ↔ ((𝑋 𝑌) (𝑋 𝑍)) 𝑋))
175, 7, 16mpbi2and 710 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) 𝑋)
181, 2, 3latmle2 17686 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
19183adant3r3 1180 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) 𝑌)
201, 2, 3latmle2 17686 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) 𝑍)
21203adant3r2 1179 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) 𝑍)
22 simpl 485 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
23 simpr2 1191 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
24 simpr3 1192 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
251, 2, 14latjlej12 17676 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵𝑌𝐵) ∧ ((𝑋 𝑍) ∈ 𝐵𝑍𝐵)) → (((𝑋 𝑌) 𝑌 ∧ (𝑋 𝑍) 𝑍) → ((𝑋 𝑌) (𝑋 𝑍)) (𝑌 𝑍)))
2622, 9, 23, 11, 24, 25syl122anc 1375 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) 𝑌 ∧ (𝑋 𝑍) 𝑍) → ((𝑋 𝑌) (𝑋 𝑍)) (𝑌 𝑍)))
2719, 21, 26mp2and 697 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) (𝑌 𝑍))
281, 14latjcl 17660 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑍) ∈ 𝐵) → ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵)
2922, 9, 11, 28syl3anc 1367 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵)
301, 14latjcl 17660 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
31303adant3r1 1178 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
321, 2, 3latlem12 17687 . . 3 ((𝐾 ∈ Lat ∧ (((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵)) → ((((𝑋 𝑌) (𝑋 𝑍)) 𝑋 ∧ ((𝑋 𝑌) (𝑋 𝑍)) (𝑌 𝑍)) ↔ ((𝑋 𝑌) (𝑋 𝑍)) (𝑋 (𝑌 𝑍))))
3322, 29, 12, 31, 32syl13anc 1368 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((𝑋 𝑌) (𝑋 𝑍)) 𝑋 ∧ ((𝑋 𝑌) (𝑋 𝑍)) (𝑌 𝑍)) ↔ ((𝑋 𝑌) (𝑋 𝑍)) (𝑋 (𝑌 𝑍))))
3417, 27, 33mpbi2and 710 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) (𝑋 (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5065  cfv 6354  (class class class)co 7155  Basecbs 16482  lecple 16571  joincjn 17553  meetcmee 17554  Latclat 17654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-poset 17555  df-lub 17583  df-glb 17584  df-join 17585  df-meet 17586  df-lat 17655
This theorem is referenced by:  omlfh1N  36393
  Copyright terms: Public domain W3C validator