MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latledi Structured version   Visualization version   GIF version

Theorem latledi 18195
Description: An ortholattice is distributive in one ordering direction. (ledi 29902 analog.) (Contributed by NM, 7-Nov-2011.)
Hypotheses
Ref Expression
latledi.b 𝐵 = (Base‘𝐾)
latledi.l = (le‘𝐾)
latledi.j = (join‘𝐾)
latledi.m = (meet‘𝐾)
Assertion
Ref Expression
latledi ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) (𝑋 (𝑌 𝑍)))

Proof of Theorem latledi
StepHypRef Expression
1 latledi.b . . . . 5 𝐵 = (Base‘𝐾)
2 latledi.l . . . . 5 = (le‘𝐾)
3 latledi.m . . . . 5 = (meet‘𝐾)
41, 2, 3latmle1 18182 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
543adant3r3 1183 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) 𝑋)
61, 2, 3latmle1 18182 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) 𝑋)
763adant3r2 1182 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) 𝑋)
81, 3latmcl 18158 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
983adant3r3 1183 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
101, 3latmcl 18158 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
11103adant3r2 1182 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) ∈ 𝐵)
12 simpr1 1193 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
139, 11, 123jca 1127 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑍) ∈ 𝐵𝑋𝐵))
14 latledi.j . . . . 5 = (join‘𝐾)
151, 2, 14latjle12 18168 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑍) ∈ 𝐵𝑋𝐵)) → (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑍) 𝑋) ↔ ((𝑋 𝑌) (𝑋 𝑍)) 𝑋))
1613, 15syldan 591 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) 𝑋 ∧ (𝑋 𝑍) 𝑋) ↔ ((𝑋 𝑌) (𝑋 𝑍)) 𝑋))
175, 7, 16mpbi2and 709 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) 𝑋)
181, 2, 3latmle2 18183 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
19183adant3r3 1183 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) 𝑌)
201, 2, 3latmle2 18183 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) 𝑍)
21203adant3r2 1182 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) 𝑍)
22 simpl 483 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
23 simpr2 1194 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
24 simpr3 1195 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
251, 2, 14latjlej12 18173 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) ∈ 𝐵𝑌𝐵) ∧ ((𝑋 𝑍) ∈ 𝐵𝑍𝐵)) → (((𝑋 𝑌) 𝑌 ∧ (𝑋 𝑍) 𝑍) → ((𝑋 𝑌) (𝑋 𝑍)) (𝑌 𝑍)))
2622, 9, 23, 11, 24, 25syl122anc 1378 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) 𝑌 ∧ (𝑋 𝑍) 𝑍) → ((𝑋 𝑌) (𝑋 𝑍)) (𝑌 𝑍)))
2719, 21, 26mp2and 696 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) (𝑌 𝑍))
281, 14latjcl 18157 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑍) ∈ 𝐵) → ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵)
2922, 9, 11, 28syl3anc 1370 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵)
301, 14latjcl 18157 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
31303adant3r1 1181 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
321, 2, 3latlem12 18184 . . 3 ((𝐾 ∈ Lat ∧ (((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵)) → ((((𝑋 𝑌) (𝑋 𝑍)) 𝑋 ∧ ((𝑋 𝑌) (𝑋 𝑍)) (𝑌 𝑍)) ↔ ((𝑋 𝑌) (𝑋 𝑍)) (𝑋 (𝑌 𝑍))))
3322, 29, 12, 31, 32syl13anc 1371 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((𝑋 𝑌) (𝑋 𝑍)) 𝑋 ∧ ((𝑋 𝑌) (𝑋 𝑍)) (𝑌 𝑍)) ↔ ((𝑋 𝑌) (𝑋 𝑍)) (𝑋 (𝑌 𝑍))))
3417, 27, 33mpbi2and 709 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) (𝑋 (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Latclat 18149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-poset 18031  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-lat 18150
This theorem is referenced by:  omlfh1N  37272
  Copyright terms: Public domain W3C validator