MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablonnncan1 Structured version   Visualization version   GIF version

Theorem ablonnncan1 28898
Description: Cancellation law for group division. (nnncan1 11240 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablonnncan1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷(𝐴𝐷𝐶)) = (𝐶𝐷𝐵))

Proof of Theorem ablonnncan1
StepHypRef Expression
1 simpr1 1192 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
2 simpr2 1193 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
3 ablogrpo 28888 . . . . . 6 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
4 abldiv.1 . . . . . . 7 𝑋 = ran 𝐺
5 abldiv.3 . . . . . . 7 𝐷 = ( /𝑔𝐺)
64, 5grpodivcl 28880 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)
73, 6syl3an1 1161 . . . . 5 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)
873adant3r2 1181 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ∈ 𝑋)
91, 2, 83jca 1126 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋))
104, 5ablodiv32 28896 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷(𝐴𝐷𝐶)) = ((𝐴𝐷(𝐴𝐷𝐶))𝐷𝐵))
119, 10syldan 590 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷(𝐴𝐷𝐶)) = ((𝐴𝐷(𝐴𝐷𝐶))𝐷𝐵))
124, 5ablonncan 28897 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷(𝐴𝐷𝐶)) = 𝐶)
13123adant3r2 1181 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐴𝐷𝐶)) = 𝐶)
1413oveq1d 7283 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷(𝐴𝐷𝐶))𝐷𝐵) = (𝐶𝐷𝐵))
1511, 14eqtrd 2779 1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷(𝐴𝐷𝐶)) = (𝐶𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  ran crn 5589  cfv 6430  (class class class)co 7268  GrpOpcgr 28830   /𝑔 cgs 28833  AbelOpcablo 28885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-grpo 28834  df-gid 28835  df-ginv 28836  df-gdiv 28837  df-ablo 28886
This theorem is referenced by:  nvnnncan1  28988
  Copyright terms: Public domain W3C validator