MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablonnncan1 Structured version   Visualization version   GIF version

Theorem ablonnncan1 28964
Description: Cancellation law for group division. (nnncan1 11303 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablonnncan1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷(𝐴𝐷𝐶)) = (𝐶𝐷𝐵))

Proof of Theorem ablonnncan1
StepHypRef Expression
1 simpr1 1194 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
2 simpr2 1195 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
3 ablogrpo 28954 . . . . . 6 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
4 abldiv.1 . . . . . . 7 𝑋 = ran 𝐺
5 abldiv.3 . . . . . . 7 𝐷 = ( /𝑔𝐺)
64, 5grpodivcl 28946 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)
73, 6syl3an1 1163 . . . . 5 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)
873adant3r2 1183 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ∈ 𝑋)
91, 2, 83jca 1128 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋))
104, 5ablodiv32 28962 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷(𝐴𝐷𝐶)) = ((𝐴𝐷(𝐴𝐷𝐶))𝐷𝐵))
119, 10syldan 592 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷(𝐴𝐷𝐶)) = ((𝐴𝐷(𝐴𝐷𝐶))𝐷𝐵))
124, 5ablonncan 28963 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷(𝐴𝐷𝐶)) = 𝐶)
13123adant3r2 1183 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐴𝐷𝐶)) = 𝐶)
1413oveq1d 7322 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷(𝐴𝐷𝐶))𝐷𝐵) = (𝐶𝐷𝐵))
1511, 14eqtrd 2776 1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷(𝐴𝐷𝐶)) = (𝐶𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  ran crn 5601  cfv 6458  (class class class)co 7307  GrpOpcgr 28896   /𝑔 cgs 28899  AbelOpcablo 28951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-grpo 28900  df-gid 28901  df-ginv 28902  df-gdiv 28903  df-ablo 28952
This theorem is referenced by:  nvnnncan1  29054
  Copyright terms: Public domain W3C validator