Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatjrot Structured version   Visualization version   GIF version

Theorem hlatjrot 35261
Description: Rotate lattice join of 3 classes. Frequently-used special case of latjrot 17368 for atoms. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
hlatjcom.j = (join‘𝐾)
hlatjcom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlatjrot ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = ((𝑅 𝑃) 𝑄))

Proof of Theorem hlatjrot
StepHypRef Expression
1 hlatjcom.j . . 3 = (join‘𝐾)
2 hlatjcom.a . . 3 𝐴 = (Atoms‘𝐾)
31, 2hlatj32 35260 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = ((𝑃 𝑅) 𝑄))
41, 2hlatjcom 35256 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) = (𝑅 𝑃))
543adant3r2 1234 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 𝑅) = (𝑅 𝑃))
65oveq1d 6857 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑅) 𝑄) = ((𝑅 𝑃) 𝑄))
73, 6eqtrd 2799 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) = ((𝑅 𝑃) 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  cfv 6068  (class class class)co 6842  joincjn 17212  Atomscatm 35151  HLchlt 35238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-proset 17196  df-poset 17214  df-lub 17242  df-glb 17243  df-join 17244  df-meet 17245  df-lat 17314  df-ats 35155  df-atl 35186  df-cvlat 35210  df-hlat 35239
This theorem is referenced by:  dalemqrprot  35536  dalemrot  35545  dalemrotyz  35546  dalem11  35562  dalem12  35563  dalem39  35599  dalem58  35618  dalem59  35619  dath2  35625  dalawlem13  35771
  Copyright terms: Public domain W3C validator