| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjlej2 | Structured version Visualization version GIF version | ||
| Description: Add join to both sides of a lattice ordering. (chlej2i 31475 analog.) (Contributed by NM, 8-Nov-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjlej2 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑍 ∨ 𝑋) ≤ (𝑍 ∨ 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | 1, 2, 3 | latjlej1 18367 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑍))) |
| 5 | 1, 3 | latjcom 18361 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∨ 𝑍) = (𝑍 ∨ 𝑋)) |
| 6 | 5 | 3adant3r2 1184 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ 𝑍) = (𝑍 ∨ 𝑋)) |
| 7 | 1, 3 | latjcom 18361 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∨ 𝑍) = (𝑍 ∨ 𝑌)) |
| 8 | 7 | 3adant3r1 1183 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∨ 𝑍) = (𝑍 ∨ 𝑌)) |
| 9 | 6, 8 | breq12d 5108 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑍) ↔ (𝑍 ∨ 𝑋) ≤ (𝑍 ∨ 𝑌))) |
| 10 | 4, 9 | sylibd 239 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑍 ∨ 𝑋) ≤ (𝑍 ∨ 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 lecple 17175 joincjn 18225 Latclat 18345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-poset 18227 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 df-lat 18346 |
| This theorem is referenced by: latjlej12 18369 cvrat3 39614 2llnjaN 39738 2lplnja 39791 dalawlem3 40045 dalawlem6 40048 dalawlem11 40053 lhpj1 40194 cdleme1 40399 cdleme9 40425 cdleme11g 40437 cdleme28a 40542 cdleme30a 40550 cdleme32c 40615 cdlemi1 40990 cdlemk11 41021 cdlemk11u 41043 cdlemk51 41125 cdlemm10N 41290 cdlemn10 41378 |
| Copyright terms: Public domain | W3C validator |