![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjlej2 | Structured version Visualization version GIF version |
Description: Add join to both sides of a lattice ordering. (chlej2i 28673 analog.) (Contributed by NM, 8-Nov-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjlej2 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑍 ∨ 𝑋) ≤ (𝑍 ∨ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | 1, 2, 3 | latjlej1 17273 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑍))) |
5 | 1, 3 | latjcom 17267 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∨ 𝑍) = (𝑍 ∨ 𝑋)) |
6 | 5 | 3adant3r2 1198 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ 𝑍) = (𝑍 ∨ 𝑋)) |
7 | 1, 3 | latjcom 17267 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∨ 𝑍) = (𝑍 ∨ 𝑌)) |
8 | 7 | 3adant3r1 1197 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∨ 𝑍) = (𝑍 ∨ 𝑌)) |
9 | 6, 8 | breq12d 4799 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑍) ↔ (𝑍 ∨ 𝑋) ≤ (𝑍 ∨ 𝑌))) |
10 | 4, 9 | sylibd 229 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑍 ∨ 𝑋) ≤ (𝑍 ∨ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 lecple 16156 joincjn 17152 Latclat 17253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-poset 17154 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-lat 17254 |
This theorem is referenced by: latjlej12 17275 cvrat3 35250 2llnjaN 35374 2lplnja 35427 dalawlem3 35681 dalawlem6 35684 dalawlem11 35689 lhpj1 35830 cdleme1 36036 cdleme9 36062 cdleme11g 36074 cdleme28a 36179 cdleme30a 36187 cdleme32c 36252 cdlemi1 36627 cdlemk11 36658 cdlemk11u 36680 cdlemk51 36762 cdlemm10N 36928 cdlemn10 37016 |
Copyright terms: Public domain | W3C validator |