MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjlej2 Structured version   Visualization version   GIF version

Theorem latjlej2 17670
Description: Add join to both sides of a lattice ordering. (chlej2i 29245 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
latlej.b 𝐵 = (Base‘𝐾)
latlej.l = (le‘𝐾)
latlej.j = (join‘𝐾)
Assertion
Ref Expression
latjlej2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑍 𝑋) (𝑍 𝑌)))

Proof of Theorem latjlej2
StepHypRef Expression
1 latlej.b . . 3 𝐵 = (Base‘𝐾)
2 latlej.l . . 3 = (le‘𝐾)
3 latlej.j . . 3 = (join‘𝐾)
41, 2, 3latjlej1 17669 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))
51, 3latjcom 17663 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) = (𝑍 𝑋))
653adant3r2 1179 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) = (𝑍 𝑋))
71, 3latjcom 17663 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑍 𝑌))
873adant3r1 1178 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) = (𝑍 𝑌))
96, 8breq12d 5072 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) (𝑌 𝑍) ↔ (𝑍 𝑋) (𝑍 𝑌)))
104, 9sylibd 241 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑍 𝑋) (𝑍 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5059  cfv 6350  (class class class)co 7150  Basecbs 16477  lecple 16566  joincjn 17548  Latclat 17649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-poset 17550  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-lat 17650
This theorem is referenced by:  latjlej12  17671  cvrat3  36572  2llnjaN  36696  2lplnja  36749  dalawlem3  37003  dalawlem6  37006  dalawlem11  37011  lhpj1  37152  cdleme1  37357  cdleme9  37383  cdleme11g  37395  cdleme28a  37500  cdleme30a  37508  cdleme32c  37573  cdlemi1  37948  cdlemk11  37979  cdlemk11u  38001  cdlemk51  38083  cdlemm10N  38248  cdlemn10  38336
  Copyright terms: Public domain W3C validator