![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjlej2 | Structured version Visualization version GIF version |
Description: Add join to both sides of a lattice ordering. (chlej2i 31151 analog.) (Contributed by NM, 8-Nov-2011.) |
Ref | Expression |
---|---|
latlej.b | β’ π΅ = (BaseβπΎ) |
latlej.l | β’ β€ = (leβπΎ) |
latlej.j | β’ β¨ = (joinβπΎ) |
Ref | Expression |
---|---|
latjlej2 | β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β€ π β (π β¨ π) β€ (π β¨ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | latlej.l | . . 3 β’ β€ = (leβπΎ) | |
3 | latlej.j | . . 3 β’ β¨ = (joinβπΎ) | |
4 | 1, 2, 3 | latjlej1 18405 | . 2 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β€ π β (π β¨ π) β€ (π β¨ π))) |
5 | 1, 3 | latjcom 18399 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (π β¨ π) = (π β¨ π)) |
6 | 5 | 3adant3r2 1180 | . . 3 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β¨ π) = (π β¨ π)) |
7 | 1, 3 | latjcom 18399 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (π β¨ π) = (π β¨ π)) |
8 | 7 | 3adant3r1 1179 | . . 3 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β¨ π) = (π β¨ π)) |
9 | 6, 8 | breq12d 5151 | . 2 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β¨ π) β€ (π β¨ π) β (π β¨ π) β€ (π β¨ π))) |
10 | 4, 9 | sylibd 238 | 1 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β€ π β (π β¨ π) β€ (π β¨ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5138 βcfv 6533 (class class class)co 7401 Basecbs 17140 lecple 17200 joincjn 18263 Latclat 18383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-poset 18265 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-lat 18384 |
This theorem is referenced by: latjlej12 18407 cvrat3 38769 2llnjaN 38893 2lplnja 38946 dalawlem3 39200 dalawlem6 39203 dalawlem11 39208 lhpj1 39349 cdleme1 39554 cdleme9 39580 cdleme11g 39592 cdleme28a 39697 cdleme30a 39705 cdleme32c 39770 cdlemi1 40145 cdlemk11 40176 cdlemk11u 40198 cdlemk51 40280 cdlemm10N 40445 cdlemn10 40533 |
Copyright terms: Public domain | W3C validator |