![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjlej2 | Structured version Visualization version GIF version |
Description: Add join to both sides of a lattice ordering. (chlej2i 31356 analog.) (Contributed by NM, 8-Nov-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjlej2 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑍 ∨ 𝑋) ≤ (𝑍 ∨ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | 1, 2, 3 | latjlej1 18448 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑍))) |
5 | 1, 3 | latjcom 18442 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∨ 𝑍) = (𝑍 ∨ 𝑋)) |
6 | 5 | 3adant3r2 1180 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ 𝑍) = (𝑍 ∨ 𝑋)) |
7 | 1, 3 | latjcom 18442 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∨ 𝑍) = (𝑍 ∨ 𝑌)) |
8 | 7 | 3adant3r1 1179 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∨ 𝑍) = (𝑍 ∨ 𝑌)) |
9 | 6, 8 | breq12d 5162 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑍) ↔ (𝑍 ∨ 𝑋) ≤ (𝑍 ∨ 𝑌))) |
10 | 4, 9 | sylibd 238 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑍 ∨ 𝑋) ≤ (𝑍 ∨ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 lecple 17243 joincjn 18306 Latclat 18426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-poset 18308 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-lat 18427 |
This theorem is referenced by: latjlej12 18450 cvrat3 39045 2llnjaN 39169 2lplnja 39222 dalawlem3 39476 dalawlem6 39479 dalawlem11 39484 lhpj1 39625 cdleme1 39830 cdleme9 39856 cdleme11g 39868 cdleme28a 39973 cdleme30a 39981 cdleme32c 40046 cdlemi1 40421 cdlemk11 40452 cdlemk11u 40474 cdlemk51 40556 cdlemm10N 40721 cdlemn10 40809 |
Copyright terms: Public domain | W3C validator |