| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjlej2 | Structured version Visualization version GIF version | ||
| Description: Add join to both sides of a lattice ordering. (chlej2i 31421 analog.) (Contributed by NM, 8-Nov-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjlej2 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑍 ∨ 𝑋) ≤ (𝑍 ∨ 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | 1, 2, 3 | latjlej1 18467 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑍))) |
| 5 | 1, 3 | latjcom 18461 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∨ 𝑍) = (𝑍 ∨ 𝑋)) |
| 6 | 5 | 3adant3r2 1183 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ 𝑍) = (𝑍 ∨ 𝑋)) |
| 7 | 1, 3 | latjcom 18461 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∨ 𝑍) = (𝑍 ∨ 𝑌)) |
| 8 | 7 | 3adant3r1 1182 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∨ 𝑍) = (𝑍 ∨ 𝑌)) |
| 9 | 6, 8 | breq12d 5136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑍) ↔ (𝑍 ∨ 𝑋) ≤ (𝑍 ∨ 𝑌))) |
| 10 | 4, 9 | sylibd 239 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑍 ∨ 𝑋) ≤ (𝑍 ∨ 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 lecple 17280 joincjn 18327 Latclat 18445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-poset 18329 df-lub 18360 df-glb 18361 df-join 18362 df-meet 18363 df-lat 18446 |
| This theorem is referenced by: latjlej12 18469 cvrat3 39403 2llnjaN 39527 2lplnja 39580 dalawlem3 39834 dalawlem6 39837 dalawlem11 39842 lhpj1 39983 cdleme1 40188 cdleme9 40214 cdleme11g 40226 cdleme28a 40331 cdleme30a 40339 cdleme32c 40404 cdlemi1 40779 cdlemk11 40810 cdlemk11u 40832 cdlemk51 40914 cdlemm10N 41079 cdlemn10 41167 |
| Copyright terms: Public domain | W3C validator |