Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latmlem1 | Structured version Visualization version GIF version |
Description: Add meet to both sides of a lattice ordering. (Contributed by NM, 10-Nov-2011.) |
Ref | Expression |
---|---|
latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
latmle.l | ⊢ ≤ = (le‘𝐾) |
latmle.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmlem1 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmle.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latmle.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | latmle.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
4 | 1, 2, 3 | latmle1 18163 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∧ 𝑍) ≤ 𝑋) |
5 | 4 | 3adant3r2 1181 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑍) ≤ 𝑋) |
6 | simpl 482 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
7 | 1, 3 | latmcl 18139 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∧ 𝑍) ∈ 𝐵) |
8 | 7 | 3adant3r2 1181 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑍) ∈ 𝐵) |
9 | simpr1 1192 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
10 | simpr2 1193 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
11 | 1, 2 | lattr 18143 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ ((𝑋 ∧ 𝑍) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
12 | 6, 8, 9, 10, 11 | syl13anc 1370 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
13 | 5, 12 | mpand 691 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
14 | 1, 2, 3 | latmle2 18164 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∧ 𝑍) ≤ 𝑍) |
15 | 14 | 3adant3r2 1181 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑍) ≤ 𝑍) |
16 | 13, 15 | jctird 526 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → ((𝑋 ∧ 𝑍) ≤ 𝑌 ∧ (𝑋 ∧ 𝑍) ≤ 𝑍))) |
17 | simpr3 1194 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
18 | 8, 10, 17 | 3jca 1126 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑍) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) |
19 | 1, 2, 3 | latlem12 18165 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((𝑋 ∧ 𝑍) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑌 ∧ (𝑋 ∧ 𝑍) ≤ 𝑍) ↔ (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
20 | 18, 19 | syldan 590 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑌 ∧ (𝑋 ∧ 𝑍) ≤ 𝑍) ↔ (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
21 | 16, 20 | sylibd 238 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 lecple 16950 meetcmee 18011 Latclat 18130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-poset 18012 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-lat 18131 |
This theorem is referenced by: latmlem2 18169 latmlem12 18170 dalem25 37691 dalawlem2 37865 dalawlem11 37874 dalawlem12 37875 cdleme22d 38336 cdleme30a 38371 cdleme32c 38436 cdleme32e 38438 trlcolem 38719 cdlemk5u 38854 cdlemk39 38909 cdlemm10N 39111 cdlemn2 39188 dihord1 39211 |
Copyright terms: Public domain | W3C validator |