| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latmlem1 | Structured version Visualization version GIF version | ||
| Description: Add meet to both sides of a lattice ordering. (Contributed by NM, 10-Nov-2011.) |
| Ref | Expression |
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmle.l | ⊢ ≤ = (le‘𝐾) |
| latmle.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latmlem1 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latmle.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 3 | latmle.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 4 | 1, 2, 3 | latmle1 18423 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∧ 𝑍) ≤ 𝑋) |
| 5 | 4 | 3adant3r2 1184 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑍) ≤ 𝑋) |
| 6 | simpl 482 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
| 7 | 1, 3 | latmcl 18399 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∧ 𝑍) ∈ 𝐵) |
| 8 | 7 | 3adant3r2 1184 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑍) ∈ 𝐵) |
| 9 | simpr1 1195 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 10 | simpr2 1196 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 11 | 1, 2 | lattr 18403 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ ((𝑋 ∧ 𝑍) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
| 12 | 6, 8, 9, 10, 11 | syl13anc 1374 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
| 13 | 5, 12 | mpand 695 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
| 14 | 1, 2, 3 | latmle2 18424 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∧ 𝑍) ≤ 𝑍) |
| 15 | 14 | 3adant3r2 1184 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑍) ≤ 𝑍) |
| 16 | 13, 15 | jctird 526 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → ((𝑋 ∧ 𝑍) ≤ 𝑌 ∧ (𝑋 ∧ 𝑍) ≤ 𝑍))) |
| 17 | simpr3 1197 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 18 | 8, 10, 17 | 3jca 1128 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑍) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) |
| 19 | 1, 2, 3 | latlem12 18425 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((𝑋 ∧ 𝑍) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑌 ∧ (𝑋 ∧ 𝑍) ≤ 𝑍) ↔ (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
| 20 | 18, 19 | syldan 591 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑌 ∧ (𝑋 ∧ 𝑍) ≤ 𝑍) ↔ (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
| 21 | 16, 20 | sylibd 239 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 meetcmee 18273 Latclat 18390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-poset 18274 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-lat 18391 |
| This theorem is referenced by: latmlem2 18429 latmlem12 18430 dalem25 39692 dalawlem2 39866 dalawlem11 39875 dalawlem12 39876 cdleme22d 40337 cdleme30a 40372 cdleme32c 40437 cdleme32e 40439 trlcolem 40720 cdlemk5u 40855 cdlemk39 40910 cdlemm10N 41112 cdlemn2 41189 dihord1 41212 |
| Copyright terms: Public domain | W3C validator |