![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latmlem1 | Structured version Visualization version GIF version |
Description: Add meet to both sides of a lattice ordering. (Contributed by NM, 10-Nov-2011.) |
Ref | Expression |
---|---|
latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
latmle.l | ⊢ ≤ = (le‘𝐾) |
latmle.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmlem1 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmle.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latmle.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | latmle.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
4 | 1, 2, 3 | latmle1 18489 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∧ 𝑍) ≤ 𝑋) |
5 | 4 | 3adant3r2 1180 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑍) ≤ 𝑋) |
6 | simpl 481 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
7 | 1, 3 | latmcl 18465 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∧ 𝑍) ∈ 𝐵) |
8 | 7 | 3adant3r2 1180 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑍) ∈ 𝐵) |
9 | simpr1 1191 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
10 | simpr2 1192 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
11 | 1, 2 | lattr 18469 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ ((𝑋 ∧ 𝑍) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
12 | 6, 8, 9, 10, 11 | syl13anc 1369 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
13 | 5, 12 | mpand 693 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
14 | 1, 2, 3 | latmle2 18490 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∧ 𝑍) ≤ 𝑍) |
15 | 14 | 3adant3r2 1180 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑍) ≤ 𝑍) |
16 | 13, 15 | jctird 525 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → ((𝑋 ∧ 𝑍) ≤ 𝑌 ∧ (𝑋 ∧ 𝑍) ≤ 𝑍))) |
17 | simpr3 1193 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
18 | 8, 10, 17 | 3jca 1125 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑍) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) |
19 | 1, 2, 3 | latlem12 18491 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((𝑋 ∧ 𝑍) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑌 ∧ (𝑋 ∧ 𝑍) ≤ 𝑍) ↔ (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
20 | 18, 19 | syldan 589 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑌 ∧ (𝑋 ∧ 𝑍) ≤ 𝑍) ↔ (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
21 | 16, 20 | sylibd 238 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 lecple 17273 meetcmee 18337 Latclat 18456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-poset 18338 df-lub 18371 df-glb 18372 df-join 18373 df-meet 18374 df-lat 18457 |
This theorem is referenced by: latmlem2 18495 latmlem12 18496 dalem25 39397 dalawlem2 39571 dalawlem11 39580 dalawlem12 39581 cdleme22d 40042 cdleme30a 40077 cdleme32c 40142 cdleme32e 40144 trlcolem 40425 cdlemk5u 40560 cdlemk39 40615 cdlemm10N 40817 cdlemn2 40894 dihord1 40917 |
Copyright terms: Public domain | W3C validator |