MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmlem1 Structured version   Visualization version   GIF version

Theorem latmlem1 18539
Description: Add meet to both sides of a lattice ordering. (Contributed by NM, 10-Nov-2011.)
Hypotheses
Ref Expression
latmle.b 𝐵 = (Base‘𝐾)
latmle.l = (le‘𝐾)
latmle.m = (meet‘𝐾)
Assertion
Ref Expression
latmlem1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))

Proof of Theorem latmlem1
StepHypRef Expression
1 latmle.b . . . . . 6 𝐵 = (Base‘𝐾)
2 latmle.l . . . . . 6 = (le‘𝐾)
3 latmle.m . . . . . 6 = (meet‘𝐾)
41, 2, 3latmle1 18534 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) 𝑋)
543adant3r2 1183 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) 𝑋)
6 simpl 482 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
71, 3latmcl 18510 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
873adant3r2 1183 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) ∈ 𝐵)
9 simpr1 1194 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
10 simpr2 1195 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
111, 2lattr 18514 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑋 𝑍) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋 𝑍) 𝑋𝑋 𝑌) → (𝑋 𝑍) 𝑌))
126, 8, 9, 10, 11syl13anc 1372 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍) 𝑋𝑋 𝑌) → (𝑋 𝑍) 𝑌))
135, 12mpand 694 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) 𝑌))
141, 2, 3latmle2 18535 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) 𝑍)
15143adant3r2 1183 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) 𝑍)
1613, 15jctird 526 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → ((𝑋 𝑍) 𝑌 ∧ (𝑋 𝑍) 𝑍)))
17 simpr3 1196 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
188, 10, 173jca 1128 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) ∈ 𝐵𝑌𝐵𝑍𝐵))
191, 2, 3latlem12 18536 . . 3 ((𝐾 ∈ Lat ∧ ((𝑋 𝑍) ∈ 𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍) 𝑌 ∧ (𝑋 𝑍) 𝑍) ↔ (𝑋 𝑍) (𝑌 𝑍)))
2018, 19syldan 590 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍) 𝑌 ∧ (𝑋 𝑍) 𝑍) ↔ (𝑋 𝑍) (𝑌 𝑍)))
2116, 20sylibd 239 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  meetcmee 18382  Latclat 18501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-poset 18383  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-lat 18502
This theorem is referenced by:  latmlem2  18540  latmlem12  18541  dalem25  39655  dalawlem2  39829  dalawlem11  39838  dalawlem12  39839  cdleme22d  40300  cdleme30a  40335  cdleme32c  40400  cdleme32e  40402  trlcolem  40683  cdlemk5u  40818  cdlemk39  40873  cdlemm10N  41075  cdlemn2  41152  dihord1  41175
  Copyright terms: Public domain W3C validator