MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmlem1 Structured version   Visualization version   GIF version

Theorem latmlem1 18479
Description: Add meet to both sides of a lattice ordering. (Contributed by NM, 10-Nov-2011.)
Hypotheses
Ref Expression
latmle.b 𝐵 = (Base‘𝐾)
latmle.l = (le‘𝐾)
latmle.m = (meet‘𝐾)
Assertion
Ref Expression
latmlem1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))

Proof of Theorem latmlem1
StepHypRef Expression
1 latmle.b . . . . . 6 𝐵 = (Base‘𝐾)
2 latmle.l . . . . . 6 = (le‘𝐾)
3 latmle.m . . . . . 6 = (meet‘𝐾)
41, 2, 3latmle1 18474 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) 𝑋)
543adant3r2 1184 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) 𝑋)
6 simpl 482 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
71, 3latmcl 18450 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
873adant3r2 1184 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) ∈ 𝐵)
9 simpr1 1195 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
10 simpr2 1196 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
111, 2lattr 18454 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑋 𝑍) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋 𝑍) 𝑋𝑋 𝑌) → (𝑋 𝑍) 𝑌))
126, 8, 9, 10, 11syl13anc 1374 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍) 𝑋𝑋 𝑌) → (𝑋 𝑍) 𝑌))
135, 12mpand 695 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) 𝑌))
141, 2, 3latmle2 18475 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) 𝑍)
15143adant3r2 1184 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) 𝑍)
1613, 15jctird 526 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → ((𝑋 𝑍) 𝑌 ∧ (𝑋 𝑍) 𝑍)))
17 simpr3 1197 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
188, 10, 173jca 1128 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) ∈ 𝐵𝑌𝐵𝑍𝐵))
191, 2, 3latlem12 18476 . . 3 ((𝐾 ∈ Lat ∧ ((𝑋 𝑍) ∈ 𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍) 𝑌 ∧ (𝑋 𝑍) 𝑍) ↔ (𝑋 𝑍) (𝑌 𝑍)))
2018, 19syldan 591 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍) 𝑌 ∧ (𝑋 𝑍) 𝑍) ↔ (𝑋 𝑍) (𝑌 𝑍)))
2116, 20sylibd 239 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  meetcmee 18324  Latclat 18441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-poset 18325  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-lat 18442
This theorem is referenced by:  latmlem2  18480  latmlem12  18481  dalem25  39717  dalawlem2  39891  dalawlem11  39900  dalawlem12  39901  cdleme22d  40362  cdleme30a  40397  cdleme32c  40462  cdleme32e  40464  trlcolem  40745  cdlemk5u  40880  cdlemk39  40935  cdlemm10N  41137  cdlemn2  41214  dihord1  41237
  Copyright terms: Public domain W3C validator