MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmlem1 Structured version   Visualization version   GIF version

Theorem latmlem1 18410
Description: Add meet to both sides of a lattice ordering. (Contributed by NM, 10-Nov-2011.)
Hypotheses
Ref Expression
latmle.b 𝐵 = (Base‘𝐾)
latmle.l = (le‘𝐾)
latmle.m = (meet‘𝐾)
Assertion
Ref Expression
latmlem1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))

Proof of Theorem latmlem1
StepHypRef Expression
1 latmle.b . . . . . 6 𝐵 = (Base‘𝐾)
2 latmle.l . . . . . 6 = (le‘𝐾)
3 latmle.m . . . . . 6 = (meet‘𝐾)
41, 2, 3latmle1 18405 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) 𝑋)
543adant3r2 1184 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) 𝑋)
6 simpl 482 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
71, 3latmcl 18381 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
873adant3r2 1184 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) ∈ 𝐵)
9 simpr1 1195 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
10 simpr2 1196 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
111, 2lattr 18385 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑋 𝑍) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋 𝑍) 𝑋𝑋 𝑌) → (𝑋 𝑍) 𝑌))
126, 8, 9, 10, 11syl13anc 1374 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍) 𝑋𝑋 𝑌) → (𝑋 𝑍) 𝑌))
135, 12mpand 695 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) 𝑌))
141, 2, 3latmle2 18406 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) 𝑍)
15143adant3r2 1184 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) 𝑍)
1613, 15jctird 526 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → ((𝑋 𝑍) 𝑌 ∧ (𝑋 𝑍) 𝑍)))
17 simpr3 1197 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
188, 10, 173jca 1128 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) ∈ 𝐵𝑌𝐵𝑍𝐵))
191, 2, 3latlem12 18407 . . 3 ((𝐾 ∈ Lat ∧ ((𝑋 𝑍) ∈ 𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍) 𝑌 ∧ (𝑋 𝑍) 𝑍) ↔ (𝑋 𝑍) (𝑌 𝑍)))
2018, 19syldan 591 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍) 𝑌 ∧ (𝑋 𝑍) 𝑍) ↔ (𝑋 𝑍) (𝑌 𝑍)))
2116, 20sylibd 239 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  meetcmee 18253  Latclat 18372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-poset 18254  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-lat 18373
This theorem is referenced by:  latmlem2  18411  latmlem12  18412  dalem25  39685  dalawlem2  39859  dalawlem11  39868  dalawlem12  39869  cdleme22d  40330  cdleme30a  40365  cdleme32c  40430  cdleme32e  40432  trlcolem  40713  cdlemk5u  40848  cdlemk39  40903  cdlemm10N  41105  cdlemn2  41182  dihord1  41205
  Copyright terms: Public domain W3C validator