MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmlem1 Structured version   Visualization version   GIF version

Theorem latmlem1 18494
Description: Add meet to both sides of a lattice ordering. (Contributed by NM, 10-Nov-2011.)
Hypotheses
Ref Expression
latmle.b 𝐵 = (Base‘𝐾)
latmle.l = (le‘𝐾)
latmle.m = (meet‘𝐾)
Assertion
Ref Expression
latmlem1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))

Proof of Theorem latmlem1
StepHypRef Expression
1 latmle.b . . . . . 6 𝐵 = (Base‘𝐾)
2 latmle.l . . . . . 6 = (le‘𝐾)
3 latmle.m . . . . . 6 = (meet‘𝐾)
41, 2, 3latmle1 18489 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) 𝑋)
543adant3r2 1180 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) 𝑋)
6 simpl 481 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
71, 3latmcl 18465 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
873adant3r2 1180 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) ∈ 𝐵)
9 simpr1 1191 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
10 simpr2 1192 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
111, 2lattr 18469 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑋 𝑍) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋 𝑍) 𝑋𝑋 𝑌) → (𝑋 𝑍) 𝑌))
126, 8, 9, 10, 11syl13anc 1369 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍) 𝑋𝑋 𝑌) → (𝑋 𝑍) 𝑌))
135, 12mpand 693 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) 𝑌))
141, 2, 3latmle2 18490 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) 𝑍)
15143adant3r2 1180 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) 𝑍)
1613, 15jctird 525 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → ((𝑋 𝑍) 𝑌 ∧ (𝑋 𝑍) 𝑍)))
17 simpr3 1193 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
188, 10, 173jca 1125 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) ∈ 𝐵𝑌𝐵𝑍𝐵))
191, 2, 3latlem12 18491 . . 3 ((𝐾 ∈ Lat ∧ ((𝑋 𝑍) ∈ 𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍) 𝑌 ∧ (𝑋 𝑍) 𝑍) ↔ (𝑋 𝑍) (𝑌 𝑍)))
2018, 19syldan 589 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍) 𝑌 ∧ (𝑋 𝑍) 𝑍) ↔ (𝑋 𝑍) (𝑌 𝑍)))
2116, 20sylibd 238 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099   class class class wbr 5153  cfv 6554  (class class class)co 7424  Basecbs 17213  lecple 17273  meetcmee 18337  Latclat 18456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-poset 18338  df-lub 18371  df-glb 18372  df-join 18373  df-meet 18374  df-lat 18457
This theorem is referenced by:  latmlem2  18495  latmlem12  18496  dalem25  39397  dalawlem2  39571  dalawlem11  39580  dalawlem12  39581  cdleme22d  40042  cdleme30a  40077  cdleme32c  40142  cdleme32e  40144  trlcolem  40425  cdlemk5u  40560  cdlemk39  40615  cdlemm10N  40817  cdlemn2  40894  dihord1  40917
  Copyright terms: Public domain W3C validator