| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latmlem1 | Structured version Visualization version GIF version | ||
| Description: Add meet to both sides of a lattice ordering. (Contributed by NM, 10-Nov-2011.) |
| Ref | Expression |
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmle.l | ⊢ ≤ = (le‘𝐾) |
| latmle.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latmlem1 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latmle.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 3 | latmle.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 4 | 1, 2, 3 | latmle1 18509 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∧ 𝑍) ≤ 𝑋) |
| 5 | 4 | 3adant3r2 1184 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑍) ≤ 𝑋) |
| 6 | simpl 482 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
| 7 | 1, 3 | latmcl 18485 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∧ 𝑍) ∈ 𝐵) |
| 8 | 7 | 3adant3r2 1184 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑍) ∈ 𝐵) |
| 9 | simpr1 1195 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 10 | simpr2 1196 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 11 | 1, 2 | lattr 18489 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ ((𝑋 ∧ 𝑍) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
| 12 | 6, 8, 9, 10, 11 | syl13anc 1374 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
| 13 | 5, 12 | mpand 695 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ 𝑌)) |
| 14 | 1, 2, 3 | latmle2 18510 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∧ 𝑍) ≤ 𝑍) |
| 15 | 14 | 3adant3r2 1184 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑍) ≤ 𝑍) |
| 16 | 13, 15 | jctird 526 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → ((𝑋 ∧ 𝑍) ≤ 𝑌 ∧ (𝑋 ∧ 𝑍) ≤ 𝑍))) |
| 17 | simpr3 1197 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 18 | 8, 10, 17 | 3jca 1129 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑍) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) |
| 19 | 1, 2, 3 | latlem12 18511 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((𝑋 ∧ 𝑍) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑌 ∧ (𝑋 ∧ 𝑍) ≤ 𝑍) ↔ (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
| 20 | 18, 19 | syldan 591 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 ∧ 𝑍) ≤ 𝑌 ∧ (𝑋 ∧ 𝑍) ≤ 𝑍) ↔ (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
| 21 | 16, 20 | sylibd 239 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 lecple 17304 meetcmee 18358 Latclat 18476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-poset 18359 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-lat 18477 |
| This theorem is referenced by: latmlem2 18515 latmlem12 18516 dalem25 39700 dalawlem2 39874 dalawlem11 39883 dalawlem12 39884 cdleme22d 40345 cdleme30a 40380 cdleme32c 40445 cdleme32e 40447 trlcolem 40728 cdlemk5u 40863 cdlemk39 40918 cdlemm10N 41120 cdlemn2 41197 dihord1 41220 |
| Copyright terms: Public domain | W3C validator |