Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnribN | Structured version Visualization version GIF version |
Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
islpln2a.l | ⊢ ≤ = (le‘𝐾) |
islpln2a.j | ⊢ ∨ = (join‘𝐾) |
islpln2a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
islpln2a.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
islpln2a.y | ⊢ 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑆) |
Ref | Expression |
---|---|
lplnribN | ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → ¬ 𝑅 ≤ (𝑄 ∨ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islpln2a.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
2 | islpln2a.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
3 | islpln2a.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 2, 3 | 3noncolr1N 37664 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → (𝑆 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑆 ∨ 𝑄))) |
5 | 4 | simprd 497 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ¬ 𝑅 ≤ (𝑆 ∨ 𝑄)) |
6 | 5 | 3expia 1121 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ¬ 𝑅 ≤ (𝑆 ∨ 𝑄))) |
7 | islpln2a.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
8 | islpln2a.y | . . . 4 ⊢ 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑆) | |
9 | 1, 2, 3, 7, 8 | islpln2ah 37763 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑌 ∈ 𝑃 ↔ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
10 | 2, 3 | hlatjcom 37582 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑄 ∨ 𝑆) = (𝑆 ∨ 𝑄)) |
11 | 10 | 3adant3r2 1183 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑄 ∨ 𝑆) = (𝑆 ∨ 𝑄)) |
12 | 11 | breq2d 5093 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑅 ≤ (𝑄 ∨ 𝑆) ↔ 𝑅 ≤ (𝑆 ∨ 𝑄))) |
13 | 12 | notbid 318 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (¬ 𝑅 ≤ (𝑄 ∨ 𝑆) ↔ ¬ 𝑅 ≤ (𝑆 ∨ 𝑄))) |
14 | 6, 9, 13 | 3imtr4d 294 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑌 ∈ 𝑃 → ¬ 𝑅 ≤ (𝑄 ∨ 𝑆))) |
15 | 14 | 3impia 1117 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → ¬ 𝑅 ≤ (𝑄 ∨ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 lecple 17018 joincjn 18078 Atomscatm 37477 HLchlt 37564 LPlanesclpl 37706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-proset 18062 df-poset 18080 df-plt 18097 df-lub 18113 df-glb 18114 df-join 18115 df-meet 18116 df-p0 18192 df-lat 18199 df-clat 18266 df-oposet 37390 df-ol 37392 df-oml 37393 df-covers 37480 df-ats 37481 df-atl 37512 df-cvlat 37536 df-hlat 37565 df-llines 37712 df-lplanes 37713 |
This theorem is referenced by: lplnri3N 37769 |
Copyright terms: Public domain | W3C validator |