Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn4 Structured version   Visualization version   GIF version

Theorem cvrnbtwn4 36520
Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (cvnbtwn4 30075 analog.) (Contributed by NM, 18-Oct-2011.)
Hypotheses
Ref Expression
cvrle.b 𝐵 = (Base‘𝐾)
cvrle.l = (le‘𝐾)
cvrle.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnbtwn4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 𝑌) ↔ (𝑋 = 𝑍𝑍 = 𝑌)))

Proof of Theorem cvrnbtwn4
StepHypRef Expression
1 cvrle.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2824 . . . 4 (lt‘𝐾) = (lt‘𝐾)
3 cvrle.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrnbtwn 36512 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌))
5 iman 405 . . . . 5 (((𝑋 𝑍𝑍 𝑌) → (𝑋 = 𝑍𝑍 = 𝑌)) ↔ ¬ ((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)))
6 cvrle.l . . . . . . . . . 10 = (le‘𝐾)
76, 2pltval 17570 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑍𝐵) → (𝑋(lt‘𝐾)𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
873adant3r2 1180 . . . . . . . 8 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋(lt‘𝐾)𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
96, 2pltval 17570 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ 𝑍𝐵𝑌𝐵) → (𝑍(lt‘𝐾)𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
1093com23 1123 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ 𝑌𝐵𝑍𝐵) → (𝑍(lt‘𝐾)𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
11103adant3r1 1179 . . . . . . . 8 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍(lt‘𝐾)𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
128, 11anbi12d 633 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌) ↔ ((𝑋 𝑍𝑋𝑍) ∧ (𝑍 𝑌𝑍𝑌))))
13 neanior 3106 . . . . . . . . 9 ((𝑋𝑍𝑍𝑌) ↔ ¬ (𝑋 = 𝑍𝑍 = 𝑌))
1413anbi2i 625 . . . . . . . 8 (((𝑋 𝑍𝑍 𝑌) ∧ (𝑋𝑍𝑍𝑌)) ↔ ((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)))
15 an4 655 . . . . . . . 8 (((𝑋 𝑍𝑍 𝑌) ∧ (𝑋𝑍𝑍𝑌)) ↔ ((𝑋 𝑍𝑋𝑍) ∧ (𝑍 𝑌𝑍𝑌)))
1614, 15bitr3i 280 . . . . . . 7 (((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)) ↔ ((𝑋 𝑍𝑋𝑍) ∧ (𝑍 𝑌𝑍𝑌)))
1712, 16syl6rbbr 293 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)) ↔ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌)))
1817notbid 321 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ ((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)) ↔ ¬ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌)))
195, 18syl5rbb 287 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌) ↔ ((𝑋 𝑍𝑍 𝑌) → (𝑋 = 𝑍𝑍 = 𝑌))))
20193adant3 1129 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (¬ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌) ↔ ((𝑋 𝑍𝑍 𝑌) → (𝑋 = 𝑍𝑍 = 𝑌))))
214, 20mpbid 235 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 𝑌) → (𝑋 = 𝑍𝑍 = 𝑌)))
221, 6posref 17561 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑍𝐵) → 𝑍 𝑍)
23223ad2antr3 1187 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍 𝑍)
24233adant3 1129 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑍 𝑍)
25 breq1 5055 . . . . 5 (𝑋 = 𝑍 → (𝑋 𝑍𝑍 𝑍))
2624, 25syl5ibrcom 250 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍𝑋 𝑍))
271, 6, 3cvrle 36519 . . . . . . . 8 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 𝑌)
2827ex 416 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 𝑌))
29283adant3r3 1181 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌𝑋 𝑌))
30293impia 1114 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 𝑌)
31 breq2 5056 . . . . 5 (𝑍 = 𝑌 → (𝑋 𝑍𝑋 𝑌))
3230, 31syl5ibrcom 250 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌𝑋 𝑍))
3326, 32jaod 856 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 = 𝑍𝑍 = 𝑌) → 𝑋 𝑍))
34 breq1 5055 . . . . 5 (𝑋 = 𝑍 → (𝑋 𝑌𝑍 𝑌))
3530, 34syl5ibcom 248 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍𝑍 𝑌))
36 breq2 5056 . . . . 5 (𝑍 = 𝑌 → (𝑍 𝑍𝑍 𝑌))
3724, 36syl5ibcom 248 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌𝑍 𝑌))
3835, 37jaod 856 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 = 𝑍𝑍 = 𝑌) → 𝑍 𝑌))
3933, 38jcad 516 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 = 𝑍𝑍 = 𝑌) → (𝑋 𝑍𝑍 𝑌)))
4021, 39impbid 215 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 𝑌) ↔ (𝑋 = 𝑍𝑍 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115  wne 3014   class class class wbr 5052  cfv 6343  Basecbs 16483  lecple 16572  Posetcpo 17550  ltcplt 17551  ccvr 36503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-iota 6302  df-fun 6345  df-fv 6351  df-proset 17538  df-poset 17556  df-plt 17568  df-covers 36507
This theorem is referenced by:  cvrcmp  36524  leatb  36533  2llnmat  36765  2lnat  37025
  Copyright terms: Public domain W3C validator