Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn4 Structured version   Visualization version   GIF version

Theorem cvrnbtwn4 36575
Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (cvnbtwn4 30072 analog.) (Contributed by NM, 18-Oct-2011.)
Hypotheses
Ref Expression
cvrle.b 𝐵 = (Base‘𝐾)
cvrle.l = (le‘𝐾)
cvrle.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnbtwn4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 𝑌) ↔ (𝑋 = 𝑍𝑍 = 𝑌)))

Proof of Theorem cvrnbtwn4
StepHypRef Expression
1 cvrle.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2798 . . . 4 (lt‘𝐾) = (lt‘𝐾)
3 cvrle.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrnbtwn 36567 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌))
5 iman 405 . . . . 5 (((𝑋 𝑍𝑍 𝑌) → (𝑋 = 𝑍𝑍 = 𝑌)) ↔ ¬ ((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)))
6 neanior 3079 . . . . . . . . 9 ((𝑋𝑍𝑍𝑌) ↔ ¬ (𝑋 = 𝑍𝑍 = 𝑌))
76anbi2i 625 . . . . . . . 8 (((𝑋 𝑍𝑍 𝑌) ∧ (𝑋𝑍𝑍𝑌)) ↔ ((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)))
8 an4 655 . . . . . . . 8 (((𝑋 𝑍𝑍 𝑌) ∧ (𝑋𝑍𝑍𝑌)) ↔ ((𝑋 𝑍𝑋𝑍) ∧ (𝑍 𝑌𝑍𝑌)))
97, 8bitr3i 280 . . . . . . 7 (((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)) ↔ ((𝑋 𝑍𝑋𝑍) ∧ (𝑍 𝑌𝑍𝑌)))
10 cvrle.l . . . . . . . . . 10 = (le‘𝐾)
1110, 2pltval 17562 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑍𝐵) → (𝑋(lt‘𝐾)𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
12113adant3r2 1180 . . . . . . . 8 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋(lt‘𝐾)𝑍 ↔ (𝑋 𝑍𝑋𝑍)))
1310, 2pltval 17562 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ 𝑍𝐵𝑌𝐵) → (𝑍(lt‘𝐾)𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
14133com23 1123 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ 𝑌𝐵𝑍𝐵) → (𝑍(lt‘𝐾)𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
15143adant3r1 1179 . . . . . . . 8 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍(lt‘𝐾)𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
1612, 15anbi12d 633 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌) ↔ ((𝑋 𝑍𝑋𝑍) ∧ (𝑍 𝑌𝑍𝑌))))
179, 16bitr4id 293 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)) ↔ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌)))
1817notbid 321 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ ((𝑋 𝑍𝑍 𝑌) ∧ ¬ (𝑋 = 𝑍𝑍 = 𝑌)) ↔ ¬ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌)))
195, 18syl5rbb 287 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌) ↔ ((𝑋 𝑍𝑍 𝑌) → (𝑋 = 𝑍𝑍 = 𝑌))))
20193adant3 1129 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (¬ (𝑋(lt‘𝐾)𝑍𝑍(lt‘𝐾)𝑌) ↔ ((𝑋 𝑍𝑍 𝑌) → (𝑋 = 𝑍𝑍 = 𝑌))))
214, 20mpbid 235 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 𝑌) → (𝑋 = 𝑍𝑍 = 𝑌)))
221, 10posref 17553 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑍𝐵) → 𝑍 𝑍)
23223ad2antr3 1187 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍 𝑍)
24233adant3 1129 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑍 𝑍)
25 breq1 5033 . . . . 5 (𝑋 = 𝑍 → (𝑋 𝑍𝑍 𝑍))
2624, 25syl5ibrcom 250 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍𝑋 𝑍))
271, 10, 3cvrle 36574 . . . . . . . 8 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 𝑌)
2827ex 416 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 𝑌))
29283adant3r3 1181 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌𝑋 𝑌))
30293impia 1114 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 𝑌)
31 breq2 5034 . . . . 5 (𝑍 = 𝑌 → (𝑋 𝑍𝑋 𝑌))
3230, 31syl5ibrcom 250 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌𝑋 𝑍))
3326, 32jaod 856 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 = 𝑍𝑍 = 𝑌) → 𝑋 𝑍))
34 breq1 5033 . . . . 5 (𝑋 = 𝑍 → (𝑋 𝑌𝑍 𝑌))
3530, 34syl5ibcom 248 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 = 𝑍𝑍 𝑌))
36 breq2 5034 . . . . 5 (𝑍 = 𝑌 → (𝑍 𝑍𝑍 𝑌))
3724, 36syl5ibcom 248 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌𝑍 𝑌))
3835, 37jaod 856 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 = 𝑍𝑍 = 𝑌) → 𝑍 𝑌))
3933, 38jcad 516 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 = 𝑍𝑍 = 𝑌) → (𝑋 𝑍𝑍 𝑌)))
4021, 39impbid 215 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 𝑍𝑍 𝑌) ↔ (𝑋 = 𝑍𝑍 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  Basecbs 16475  lecple 16564  Posetcpo 17542  ltcplt 17543  ccvr 36558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-proset 17530  df-poset 17548  df-plt 17560  df-covers 36562
This theorem is referenced by:  cvrcmp  36579  leatb  36588  2llnmat  36820  2lnat  37080
  Copyright terms: Public domain W3C validator