MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mettri2 Structured version   Visualization version   GIF version

Theorem mettri2 22425
Description: Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
mettri2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))

Proof of Theorem mettri2
StepHypRef Expression
1 metxmet 22418 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2 xmettri2 22424 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
31, 2sylan 575 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
4 metcl 22416 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐶𝑋𝐴𝑋) → (𝐶𝐷𝐴) ∈ ℝ)
543adant3r3 1235 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐶𝐷𝐴) ∈ ℝ)
6 metcl 22416 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐶𝑋𝐵𝑋) → (𝐶𝐷𝐵) ∈ ℝ)
763adant3r2 1234 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐶𝐷𝐵) ∈ ℝ)
8 rexadd 12265 . . 3 (((𝐶𝐷𝐴) ∈ ℝ ∧ (𝐶𝐷𝐵) ∈ ℝ) → ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)) = ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
95, 7, 8syl2anc 579 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)) = ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
103, 9breqtrd 4835 1 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155   class class class wbr 4809  cfv 6068  (class class class)co 6842  cr 10188   + caddc 10192  cle 10329   +𝑒 cxad 12144  ∞Metcxmet 20004  Metcmet 20005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-mulcl 10251  ax-i2m1 10257
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-xadd 12147  df-xmet 20012  df-met 20013
This theorem is referenced by:  mettri  22436  mstri2  22551  metf1o  33973  isbnd3  34005  heibor1lem  34030  bfplem2  34044
  Copyright terms: Public domain W3C validator