MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash3tr Structured version   Visualization version   GIF version

Theorem hash3tr 14456
Description: A set of size three is an unordered triple. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
hash3tr ((𝑉𝑊 ∧ (♯‘𝑉) = 3) → ∃𝑎𝑏𝑐 𝑉 = {𝑎, 𝑏, 𝑐})
Distinct variable group:   𝑉,𝑎,𝑏,𝑐
Allowed substitution hints:   𝑊(𝑎,𝑏,𝑐)

Proof of Theorem hash3tr
StepHypRef Expression
1 3nn0 12495 . . . . 5 3 ∈ ℕ0
2 hashvnfin 14325 . . . . 5 ((𝑉𝑊 ∧ 3 ∈ ℕ0) → ((♯‘𝑉) = 3 → 𝑉 ∈ Fin))
31, 2mpan2 688 . . . 4 (𝑉𝑊 → ((♯‘𝑉) = 3 → 𝑉 ∈ Fin))
43imp 406 . . 3 ((𝑉𝑊 ∧ (♯‘𝑉) = 3) → 𝑉 ∈ Fin)
5 hash3 14371 . . . . . . . 8 (♯‘3o) = 3
65eqcomi 2740 . . . . . . 7 3 = (♯‘3o)
76a1i 11 . . . . . 6 (𝑉 ∈ Fin → 3 = (♯‘3o))
87eqeq2d 2742 . . . . 5 (𝑉 ∈ Fin → ((♯‘𝑉) = 3 ↔ (♯‘𝑉) = (♯‘3o)))
9 3onn 8646 . . . . . . . 8 3o ∈ ω
10 nnfi 9170 . . . . . . . 8 (3o ∈ ω → 3o ∈ Fin)
119, 10ax-mp 5 . . . . . . 7 3o ∈ Fin
12 hashen 14312 . . . . . . 7 ((𝑉 ∈ Fin ∧ 3o ∈ Fin) → ((♯‘𝑉) = (♯‘3o) ↔ 𝑉 ≈ 3o))
1311, 12mpan2 688 . . . . . 6 (𝑉 ∈ Fin → ((♯‘𝑉) = (♯‘3o) ↔ 𝑉 ≈ 3o))
1413biimpd 228 . . . . 5 (𝑉 ∈ Fin → ((♯‘𝑉) = (♯‘3o) → 𝑉 ≈ 3o))
158, 14sylbid 239 . . . 4 (𝑉 ∈ Fin → ((♯‘𝑉) = 3 → 𝑉 ≈ 3o))
1615adantld 490 . . 3 (𝑉 ∈ Fin → ((𝑉𝑊 ∧ (♯‘𝑉) = 3) → 𝑉 ≈ 3o))
174, 16mpcom 38 . 2 ((𝑉𝑊 ∧ (♯‘𝑉) = 3) → 𝑉 ≈ 3o)
18 en3 9285 . 2 (𝑉 ≈ 3o → ∃𝑎𝑏𝑐 𝑉 = {𝑎, 𝑏, 𝑐})
1917, 18syl 17 1 ((𝑉𝑊 ∧ (♯‘𝑉) = 3) → ∃𝑎𝑏𝑐 𝑉 = {𝑎, 𝑏, 𝑐})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wex 1780  wcel 2105  {ctp 4632   class class class wbr 5148  cfv 6543  ωcom 7858  3oc3o 8464  cen 8939  Fincfn 8942  3c3 12273  0cn0 12477  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-3o 8471  df-oadd 8473  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-dju 9899  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-hash 14296
This theorem is referenced by:  hash1to3  14457
  Copyright terms: Public domain W3C validator