![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hash3tr | Structured version Visualization version GIF version |
Description: A set of size three is an unordered triple. (Contributed by Alexander van der Vekens, 13-Sep-2018.) |
Ref | Expression |
---|---|
hash3tr | ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐 𝑉 = {𝑎, 𝑏, 𝑐}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn0 12488 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
2 | hashvnfin 14318 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 3 ∈ ℕ0) → ((♯‘𝑉) = 3 → 𝑉 ∈ Fin)) | |
3 | 1, 2 | mpan2 688 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 3 → 𝑉 ∈ Fin)) |
4 | 3 | imp 406 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 3) → 𝑉 ∈ Fin) |
5 | hash3 14364 | . . . . . . . 8 ⊢ (♯‘3o) = 3 | |
6 | 5 | eqcomi 2733 | . . . . . . 7 ⊢ 3 = (♯‘3o) |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝑉 ∈ Fin → 3 = (♯‘3o)) |
8 | 7 | eqeq2d 2735 | . . . . 5 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = 3 ↔ (♯‘𝑉) = (♯‘3o))) |
9 | 3onn 8640 | . . . . . . . 8 ⊢ 3o ∈ ω | |
10 | nnfi 9164 | . . . . . . . 8 ⊢ (3o ∈ ω → 3o ∈ Fin) | |
11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ 3o ∈ Fin |
12 | hashen 14305 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ 3o ∈ Fin) → ((♯‘𝑉) = (♯‘3o) ↔ 𝑉 ≈ 3o)) | |
13 | 11, 12 | mpan2 688 | . . . . . 6 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = (♯‘3o) ↔ 𝑉 ≈ 3o)) |
14 | 13 | biimpd 228 | . . . . 5 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = (♯‘3o) → 𝑉 ≈ 3o)) |
15 | 8, 14 | sylbid 239 | . . . 4 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = 3 → 𝑉 ≈ 3o)) |
16 | 15 | adantld 490 | . . 3 ⊢ (𝑉 ∈ Fin → ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 3) → 𝑉 ≈ 3o)) |
17 | 4, 16 | mpcom 38 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 3) → 𝑉 ≈ 3o) |
18 | en3 9279 | . 2 ⊢ (𝑉 ≈ 3o → ∃𝑎∃𝑏∃𝑐 𝑉 = {𝑎, 𝑏, 𝑐}) | |
19 | 17, 18 | syl 17 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐 𝑉 = {𝑎, 𝑏, 𝑐}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {ctp 4625 class class class wbr 5139 ‘cfv 6534 ωcom 7849 3oc3o 8457 ≈ cen 8933 Fincfn 8936 3c3 12266 ℕ0cn0 12470 ♯chash 14288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-3o 8464 df-oadd 8466 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-dju 9893 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-3 12274 df-n0 12471 df-z 12557 df-uz 12821 df-fz 13483 df-hash 14289 |
This theorem is referenced by: hash1to3 14450 |
Copyright terms: Public domain | W3C validator |