![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hash3tr | Structured version Visualization version GIF version |
Description: A set of size three is an unordered triple. (Contributed by Alexander van der Vekens, 13-Sep-2018.) |
Ref | Expression |
---|---|
hash3tr | ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐 𝑉 = {𝑎, 𝑏, 𝑐}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn0 12495 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
2 | hashvnfin 14325 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 3 ∈ ℕ0) → ((♯‘𝑉) = 3 → 𝑉 ∈ Fin)) | |
3 | 1, 2 | mpan2 688 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 3 → 𝑉 ∈ Fin)) |
4 | 3 | imp 406 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 3) → 𝑉 ∈ Fin) |
5 | hash3 14371 | . . . . . . . 8 ⊢ (♯‘3o) = 3 | |
6 | 5 | eqcomi 2740 | . . . . . . 7 ⊢ 3 = (♯‘3o) |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝑉 ∈ Fin → 3 = (♯‘3o)) |
8 | 7 | eqeq2d 2742 | . . . . 5 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = 3 ↔ (♯‘𝑉) = (♯‘3o))) |
9 | 3onn 8646 | . . . . . . . 8 ⊢ 3o ∈ ω | |
10 | nnfi 9170 | . . . . . . . 8 ⊢ (3o ∈ ω → 3o ∈ Fin) | |
11 | 9, 10 | ax-mp 5 | . . . . . . 7 ⊢ 3o ∈ Fin |
12 | hashen 14312 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ 3o ∈ Fin) → ((♯‘𝑉) = (♯‘3o) ↔ 𝑉 ≈ 3o)) | |
13 | 11, 12 | mpan2 688 | . . . . . 6 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = (♯‘3o) ↔ 𝑉 ≈ 3o)) |
14 | 13 | biimpd 228 | . . . . 5 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = (♯‘3o) → 𝑉 ≈ 3o)) |
15 | 8, 14 | sylbid 239 | . . . 4 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = 3 → 𝑉 ≈ 3o)) |
16 | 15 | adantld 490 | . . 3 ⊢ (𝑉 ∈ Fin → ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 3) → 𝑉 ≈ 3o)) |
17 | 4, 16 | mpcom 38 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 3) → 𝑉 ≈ 3o) |
18 | en3 9285 | . 2 ⊢ (𝑉 ≈ 3o → ∃𝑎∃𝑏∃𝑐 𝑉 = {𝑎, 𝑏, 𝑐}) | |
19 | 17, 18 | syl 17 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐 𝑉 = {𝑎, 𝑏, 𝑐}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {ctp 4632 class class class wbr 5148 ‘cfv 6543 ωcom 7858 3oc3o 8464 ≈ cen 8939 Fincfn 8942 3c3 12273 ℕ0cn0 12477 ♯chash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-3o 8471 df-oadd 8473 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-dju 9899 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-hash 14296 |
This theorem is referenced by: hash1to3 14457 |
Copyright terms: Public domain | W3C validator |