MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash3tr Structured version   Visualization version   GIF version

Theorem hash3tr 13699
Description: A set of size three is an unordered triple. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
hash3tr ((𝑉𝑊 ∧ (♯‘𝑉) = 3) → ∃𝑎𝑏𝑐 𝑉 = {𝑎, 𝑏, 𝑐})
Distinct variable group:   𝑉,𝑎,𝑏,𝑐
Allowed substitution hints:   𝑊(𝑎,𝑏,𝑐)

Proof of Theorem hash3tr
StepHypRef Expression
1 3nn0 11768 . . . . 5 3 ∈ ℕ0
2 hashvnfin 13576 . . . . 5 ((𝑉𝑊 ∧ 3 ∈ ℕ0) → ((♯‘𝑉) = 3 → 𝑉 ∈ Fin))
31, 2mpan2 687 . . . 4 (𝑉𝑊 → ((♯‘𝑉) = 3 → 𝑉 ∈ Fin))
43imp 407 . . 3 ((𝑉𝑊 ∧ (♯‘𝑉) = 3) → 𝑉 ∈ Fin)
5 hash3 13620 . . . . . . . 8 (♯‘3o) = 3
65eqcomi 2804 . . . . . . 7 3 = (♯‘3o)
76a1i 11 . . . . . 6 (𝑉 ∈ Fin → 3 = (♯‘3o))
87eqeq2d 2805 . . . . 5 (𝑉 ∈ Fin → ((♯‘𝑉) = 3 ↔ (♯‘𝑉) = (♯‘3o)))
9 3onn 8122 . . . . . . . 8 3o ∈ ω
10 nnfi 8562 . . . . . . . 8 (3o ∈ ω → 3o ∈ Fin)
119, 10ax-mp 5 . . . . . . 7 3o ∈ Fin
12 hashen 13562 . . . . . . 7 ((𝑉 ∈ Fin ∧ 3o ∈ Fin) → ((♯‘𝑉) = (♯‘3o) ↔ 𝑉 ≈ 3o))
1311, 12mpan2 687 . . . . . 6 (𝑉 ∈ Fin → ((♯‘𝑉) = (♯‘3o) ↔ 𝑉 ≈ 3o))
1413biimpd 230 . . . . 5 (𝑉 ∈ Fin → ((♯‘𝑉) = (♯‘3o) → 𝑉 ≈ 3o))
158, 14sylbid 241 . . . 4 (𝑉 ∈ Fin → ((♯‘𝑉) = 3 → 𝑉 ≈ 3o))
1615adantld 491 . . 3 (𝑉 ∈ Fin → ((𝑉𝑊 ∧ (♯‘𝑉) = 3) → 𝑉 ≈ 3o))
174, 16mpcom 38 . 2 ((𝑉𝑊 ∧ (♯‘𝑉) = 3) → 𝑉 ≈ 3o)
18 en3 8606 . 2 (𝑉 ≈ 3o → ∃𝑎𝑏𝑐 𝑉 = {𝑎, 𝑏, 𝑐})
1917, 18syl 17 1 ((𝑉𝑊 ∧ (♯‘𝑉) = 3) → ∃𝑎𝑏𝑐 𝑉 = {𝑎, 𝑏, 𝑐})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wex 1761  wcel 2081  {ctp 4480   class class class wbr 4966  cfv 6230  ωcom 7441  3oc3o 7953  cen 8359  Fincfn 8362  3c3 11546  0cn0 11750  chash 13545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-2o 7959  df-3o 7960  df-oadd 7962  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-dju 9181  df-card 9219  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-nn 11492  df-2 11553  df-3 11554  df-n0 11751  df-z 11835  df-uz 12099  df-fz 12748  df-hash 13546
This theorem is referenced by:  hash1to3  13700
  Copyright terms: Public domain W3C validator