Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 235t711 | Structured version Visualization version GIF version |
Description: Calculate a product by
long multiplication as a base comparison with other
multiplication algorithms.
Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 11077 saving the lower level uses of mulcomli 11077 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12639 are added then this proof would benefit more than ex-decpmul 40570. For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12201 or 8t7e56 12650. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
235t711 | ⊢ (;;235 · ;;711) = ;;;;;167085 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12343 | . . . 4 ⊢ 2 ∈ ℕ0 | |
2 | 3nn0 12344 | . . . 4 ⊢ 3 ∈ ℕ0 | |
3 | 1, 2 | deccl 12545 | . . 3 ⊢ ;23 ∈ ℕ0 |
4 | 5nn0 12346 | . . 3 ⊢ 5 ∈ ℕ0 | |
5 | 3, 4 | deccl 12545 | . 2 ⊢ ;;235 ∈ ℕ0 |
6 | 7nn0 12348 | . . 3 ⊢ 7 ∈ ℕ0 | |
7 | 1nn0 12342 | . . 3 ⊢ 1 ∈ ℕ0 | |
8 | 6, 7 | deccl 12545 | . 2 ⊢ ;71 ∈ ℕ0 |
9 | eqid 2736 | . 2 ⊢ ;;711 = ;;711 | |
10 | eqid 2736 | . . 3 ⊢ ;71 = ;71 | |
11 | eqid 2736 | . . 3 ⊢ ;23 = ;23 | |
12 | 8nn0 12349 | . . 3 ⊢ 8 ∈ ℕ0 | |
13 | eqid 2736 | . . . 4 ⊢ ;;235 = ;;235 | |
14 | 3 | nn0cni 12338 | . . . . 5 ⊢ ;23 ∈ ℂ |
15 | 2cn 12141 | . . . . 5 ⊢ 2 ∈ ℂ | |
16 | 3p2e5 12217 | . . . . . 6 ⊢ (3 + 2) = 5 | |
17 | 1, 2, 1, 11, 16 | decaddi 12590 | . . . . 5 ⊢ (;23 + 2) = ;25 |
18 | 14, 15, 17 | addcomli 11260 | . . . 4 ⊢ (2 + ;23) = ;25 |
19 | 0nn0 12341 | . . . 4 ⊢ 0 ∈ ℕ0 | |
20 | 4nn0 12345 | . . . 4 ⊢ 4 ∈ ℕ0 | |
21 | 6nn0 12347 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
22 | 7, 21 | deccl 12545 | . . . . 5 ⊢ ;16 ∈ ℕ0 |
23 | 1, 20 | nn0addcli 12363 | . . . . 5 ⊢ (2 + 4) ∈ ℕ0 |
24 | 7cn 12160 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
25 | 7t2e14 12639 | . . . . . . . 8 ⊢ (7 · 2) = ;14 | |
26 | 24, 15, 25 | mulcomli 11077 | . . . . . . 7 ⊢ (2 · 7) = ;14 |
27 | 4p2e6 12219 | . . . . . . 7 ⊢ (4 + 2) = 6 | |
28 | 7, 20, 1, 26, 27 | decaddi 12590 | . . . . . 6 ⊢ ((2 · 7) + 2) = ;16 |
29 | 3cn 12147 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
30 | 7t3e21 12640 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
31 | 24, 29, 30 | mulcomli 11077 | . . . . . 6 ⊢ (3 · 7) = ;21 |
32 | 6, 1, 2, 11, 7, 1, 28, 31 | decmul1c 12595 | . . . . 5 ⊢ (;23 · 7) = ;;161 |
33 | 4cn 12151 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
34 | 15, 33 | addcli 11074 | . . . . . 6 ⊢ (2 + 4) ∈ ℂ |
35 | ax-1cn 11022 | . . . . . 6 ⊢ 1 ∈ ℂ | |
36 | 33, 15, 27 | addcomli 11260 | . . . . . . . 8 ⊢ (2 + 4) = 6 |
37 | 36 | oveq1i 7339 | . . . . . . 7 ⊢ ((2 + 4) + 1) = (6 + 1) |
38 | 6p1e7 12214 | . . . . . . 7 ⊢ (6 + 1) = 7 | |
39 | 37, 38 | eqtri 2764 | . . . . . 6 ⊢ ((2 + 4) + 1) = 7 |
40 | 34, 35, 39 | addcomli 11260 | . . . . 5 ⊢ (1 + (2 + 4)) = 7 |
41 | 22, 7, 23, 32, 40 | decaddi 12590 | . . . 4 ⊢ ((;23 · 7) + (2 + 4)) = ;;167 |
42 | 5cn 12154 | . . . . . 6 ⊢ 5 ∈ ℂ | |
43 | 7t5e35 12642 | . . . . . 6 ⊢ (7 · 5) = ;35 | |
44 | 24, 42, 43 | mulcomli 11077 | . . . . 5 ⊢ (5 · 7) = ;35 |
45 | 3p1e4 12211 | . . . . 5 ⊢ (3 + 1) = 4 | |
46 | 5p5e10 12601 | . . . . 5 ⊢ (5 + 5) = ;10 | |
47 | 2, 4, 4, 44, 45, 46 | decaddci2 12592 | . . . 4 ⊢ ((5 · 7) + 5) = ;40 |
48 | 3, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47 | decmac 12582 | . . 3 ⊢ ((;;235 · 7) + (2 + ;23)) = ;;;1670 |
49 | 5 | nn0cni 12338 | . . . . 5 ⊢ ;;235 ∈ ℂ |
50 | 49 | mulid1i 11072 | . . . 4 ⊢ (;;235 · 1) = ;;235 |
51 | 5p3e8 12223 | . . . 4 ⊢ (5 + 3) = 8 | |
52 | 3, 4, 2, 50, 51 | decaddi 12590 | . . 3 ⊢ ((;;235 · 1) + 3) = ;;238 |
53 | 6, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52 | decma2c 12583 | . 2 ⊢ ((;;235 · ;71) + ;23) = ;;;;16708 |
54 | 5, 8, 7, 9, 4, 3, 53, 50 | decmul2c 12596 | 1 ⊢ (;;235 · ;;711) = ;;;;;167085 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 (class class class)co 7329 0cc0 10964 1c1 10965 + caddc 10967 · cmul 10969 2c2 12121 3c3 12122 4c4 12123 5c5 12124 6c6 12125 7c7 12126 8c8 12127 ;cdc 12530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-ltxr 11107 df-sub 11300 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-dec 12531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |