![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 235t711 | Structured version Visualization version GIF version |
Description: Calculate a product by
long multiplication as a base comparison with other
multiplication algorithms.
Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 11299 saving the lower level uses of mulcomli 11299 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12867 are added then this proof would benefit more than ex-decpmul 42294. For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12428 or 8t7e56 12878. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
235t711 | ⊢ (;;235 · ;;711) = ;;;;;167085 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12570 | . . . 4 ⊢ 2 ∈ ℕ0 | |
2 | 3nn0 12571 | . . . 4 ⊢ 3 ∈ ℕ0 | |
3 | 1, 2 | deccl 12773 | . . 3 ⊢ ;23 ∈ ℕ0 |
4 | 5nn0 12573 | . . 3 ⊢ 5 ∈ ℕ0 | |
5 | 3, 4 | deccl 12773 | . 2 ⊢ ;;235 ∈ ℕ0 |
6 | 7nn0 12575 | . . 3 ⊢ 7 ∈ ℕ0 | |
7 | 1nn0 12569 | . . 3 ⊢ 1 ∈ ℕ0 | |
8 | 6, 7 | deccl 12773 | . 2 ⊢ ;71 ∈ ℕ0 |
9 | eqid 2740 | . 2 ⊢ ;;711 = ;;711 | |
10 | eqid 2740 | . . 3 ⊢ ;71 = ;71 | |
11 | eqid 2740 | . . 3 ⊢ ;23 = ;23 | |
12 | 8nn0 12576 | . . 3 ⊢ 8 ∈ ℕ0 | |
13 | eqid 2740 | . . . 4 ⊢ ;;235 = ;;235 | |
14 | 3 | nn0cni 12565 | . . . . 5 ⊢ ;23 ∈ ℂ |
15 | 2cn 12368 | . . . . 5 ⊢ 2 ∈ ℂ | |
16 | 3p2e5 12444 | . . . . . 6 ⊢ (3 + 2) = 5 | |
17 | 1, 2, 1, 11, 16 | decaddi 12818 | . . . . 5 ⊢ (;23 + 2) = ;25 |
18 | 14, 15, 17 | addcomli 11482 | . . . 4 ⊢ (2 + ;23) = ;25 |
19 | 0nn0 12568 | . . . 4 ⊢ 0 ∈ ℕ0 | |
20 | 4nn0 12572 | . . . 4 ⊢ 4 ∈ ℕ0 | |
21 | 6nn0 12574 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
22 | 7, 21 | deccl 12773 | . . . . 5 ⊢ ;16 ∈ ℕ0 |
23 | 1, 20 | nn0addcli 12590 | . . . . 5 ⊢ (2 + 4) ∈ ℕ0 |
24 | 7cn 12387 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
25 | 7t2e14 12867 | . . . . . . . 8 ⊢ (7 · 2) = ;14 | |
26 | 24, 15, 25 | mulcomli 11299 | . . . . . . 7 ⊢ (2 · 7) = ;14 |
27 | 4p2e6 12446 | . . . . . . 7 ⊢ (4 + 2) = 6 | |
28 | 7, 20, 1, 26, 27 | decaddi 12818 | . . . . . 6 ⊢ ((2 · 7) + 2) = ;16 |
29 | 3cn 12374 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
30 | 7t3e21 12868 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
31 | 24, 29, 30 | mulcomli 11299 | . . . . . 6 ⊢ (3 · 7) = ;21 |
32 | 6, 1, 2, 11, 7, 1, 28, 31 | decmul1c 12823 | . . . . 5 ⊢ (;23 · 7) = ;;161 |
33 | 4cn 12378 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
34 | 15, 33 | addcli 11296 | . . . . . 6 ⊢ (2 + 4) ∈ ℂ |
35 | ax-1cn 11242 | . . . . . 6 ⊢ 1 ∈ ℂ | |
36 | 33, 15, 27 | addcomli 11482 | . . . . . . . 8 ⊢ (2 + 4) = 6 |
37 | 36 | oveq1i 7458 | . . . . . . 7 ⊢ ((2 + 4) + 1) = (6 + 1) |
38 | 6p1e7 12441 | . . . . . . 7 ⊢ (6 + 1) = 7 | |
39 | 37, 38 | eqtri 2768 | . . . . . 6 ⊢ ((2 + 4) + 1) = 7 |
40 | 34, 35, 39 | addcomli 11482 | . . . . 5 ⊢ (1 + (2 + 4)) = 7 |
41 | 22, 7, 23, 32, 40 | decaddi 12818 | . . . 4 ⊢ ((;23 · 7) + (2 + 4)) = ;;167 |
42 | 5cn 12381 | . . . . . 6 ⊢ 5 ∈ ℂ | |
43 | 7t5e35 12870 | . . . . . 6 ⊢ (7 · 5) = ;35 | |
44 | 24, 42, 43 | mulcomli 11299 | . . . . 5 ⊢ (5 · 7) = ;35 |
45 | 3p1e4 12438 | . . . . 5 ⊢ (3 + 1) = 4 | |
46 | 5p5e10 12829 | . . . . 5 ⊢ (5 + 5) = ;10 | |
47 | 2, 4, 4, 44, 45, 46 | decaddci2 12820 | . . . 4 ⊢ ((5 · 7) + 5) = ;40 |
48 | 3, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47 | decmac 12810 | . . 3 ⊢ ((;;235 · 7) + (2 + ;23)) = ;;;1670 |
49 | 5 | nn0cni 12565 | . . . . 5 ⊢ ;;235 ∈ ℂ |
50 | 49 | mulridi 11294 | . . . 4 ⊢ (;;235 · 1) = ;;235 |
51 | 5p3e8 12450 | . . . 4 ⊢ (5 + 3) = 8 | |
52 | 3, 4, 2, 50, 51 | decaddi 12818 | . . 3 ⊢ ((;;235 · 1) + 3) = ;;238 |
53 | 6, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52 | decma2c 12811 | . 2 ⊢ ((;;235 · ;71) + ;23) = ;;;;16708 |
54 | 5, 8, 7, 9, 4, 3, 53, 50 | decmul2c 12824 | 1 ⊢ (;;235 · ;;711) = ;;;;;167085 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 2c2 12348 3c3 12349 4c4 12350 5c5 12351 6c6 12352 7c7 12353 8c8 12354 ;cdc 12758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-dec 12759 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |