Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  235t711 Structured version   Visualization version   GIF version

Theorem 235t711 40514
Description: Calculate a product by long multiplication as a base comparison with other multiplication algorithms.

Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 11034 saving the lower level uses of mulcomli 11034 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12596 are added then this proof would benefit more than ex-decpmul 40515.

For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12158 or 8t7e56 12607. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.)

Assertion
Ref Expression
235t711 (235 · 711) = 167085

Proof of Theorem 235t711
StepHypRef Expression
1 2nn0 12300 . . . 4 2 ∈ ℕ0
2 3nn0 12301 . . . 4 3 ∈ ℕ0
31, 2deccl 12502 . . 3 23 ∈ ℕ0
4 5nn0 12303 . . 3 5 ∈ ℕ0
53, 4deccl 12502 . 2 235 ∈ ℕ0
6 7nn0 12305 . . 3 7 ∈ ℕ0
7 1nn0 12299 . . 3 1 ∈ ℕ0
86, 7deccl 12502 . 2 71 ∈ ℕ0
9 eqid 2736 . 2 711 = 711
10 eqid 2736 . . 3 71 = 71
11 eqid 2736 . . 3 23 = 23
12 8nn0 12306 . . 3 8 ∈ ℕ0
13 eqid 2736 . . . 4 235 = 235
143nn0cni 12295 . . . . 5 23 ∈ ℂ
15 2cn 12098 . . . . 5 2 ∈ ℂ
16 3p2e5 12174 . . . . . 6 (3 + 2) = 5
171, 2, 1, 11, 16decaddi 12547 . . . . 5 (23 + 2) = 25
1814, 15, 17addcomli 11217 . . . 4 (2 + 23) = 25
19 0nn0 12298 . . . 4 0 ∈ ℕ0
20 4nn0 12302 . . . 4 4 ∈ ℕ0
21 6nn0 12304 . . . . . 6 6 ∈ ℕ0
227, 21deccl 12502 . . . . 5 16 ∈ ℕ0
231, 20nn0addcli 12320 . . . . 5 (2 + 4) ∈ ℕ0
24 7cn 12117 . . . . . . . 8 7 ∈ ℂ
25 7t2e14 12596 . . . . . . . 8 (7 · 2) = 14
2624, 15, 25mulcomli 11034 . . . . . . 7 (2 · 7) = 14
27 4p2e6 12176 . . . . . . 7 (4 + 2) = 6
287, 20, 1, 26, 27decaddi 12547 . . . . . 6 ((2 · 7) + 2) = 16
29 3cn 12104 . . . . . . 7 3 ∈ ℂ
30 7t3e21 12597 . . . . . . 7 (7 · 3) = 21
3124, 29, 30mulcomli 11034 . . . . . 6 (3 · 7) = 21
326, 1, 2, 11, 7, 1, 28, 31decmul1c 12552 . . . . 5 (23 · 7) = 161
33 4cn 12108 . . . . . . 7 4 ∈ ℂ
3415, 33addcli 11031 . . . . . 6 (2 + 4) ∈ ℂ
35 ax-1cn 10979 . . . . . 6 1 ∈ ℂ
3633, 15, 27addcomli 11217 . . . . . . . 8 (2 + 4) = 6
3736oveq1i 7317 . . . . . . 7 ((2 + 4) + 1) = (6 + 1)
38 6p1e7 12171 . . . . . . 7 (6 + 1) = 7
3937, 38eqtri 2764 . . . . . 6 ((2 + 4) + 1) = 7
4034, 35, 39addcomli 11217 . . . . 5 (1 + (2 + 4)) = 7
4122, 7, 23, 32, 40decaddi 12547 . . . 4 ((23 · 7) + (2 + 4)) = 167
42 5cn 12111 . . . . . 6 5 ∈ ℂ
43 7t5e35 12599 . . . . . 6 (7 · 5) = 35
4424, 42, 43mulcomli 11034 . . . . 5 (5 · 7) = 35
45 3p1e4 12168 . . . . 5 (3 + 1) = 4
46 5p5e10 12558 . . . . 5 (5 + 5) = 10
472, 4, 4, 44, 45, 46decaddci2 12549 . . . 4 ((5 · 7) + 5) = 40
483, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47decmac 12539 . . 3 ((235 · 7) + (2 + 23)) = 1670
495nn0cni 12295 . . . . 5 235 ∈ ℂ
5049mulid1i 11029 . . . 4 (235 · 1) = 235
51 5p3e8 12180 . . . 4 (5 + 3) = 8
523, 4, 2, 50, 51decaddi 12547 . . 3 ((235 · 1) + 3) = 238
536, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52decma2c 12540 . 2 ((235 · 71) + 23) = 16708
545, 8, 7, 9, 4, 3, 53, 50decmul2c 12553 1 (235 · 711) = 167085
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  (class class class)co 7307  0cc0 10921  1c1 10922   + caddc 10924   · cmul 10926  2c2 12078  3c3 12079  4c4 12080  5c5 12081  6c6 12082  7c7 12083  8c8 12084  cdc 12487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-ltxr 11064  df-sub 11257  df-nn 12024  df-2 12086  df-3 12087  df-4 12088  df-5 12089  df-6 12090  df-7 12091  df-8 12092  df-9 12093  df-n0 12284  df-dec 12488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator