Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  235t711 Structured version   Visualization version   GIF version

Theorem 235t711 42288
Description: Calculate a product by long multiplication as a base comparison with other multiplication algorithms.

Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 11124 saving the lower level uses of mulcomli 11124 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12700 are added then this proof would benefit more than ex-decpmul 42289.

For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12258 or 8t7e56 12711. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.)

Assertion
Ref Expression
235t711 (235 · 711) = 167085

Proof of Theorem 235t711
StepHypRef Expression
1 2nn0 12401 . . . 4 2 ∈ ℕ0
2 3nn0 12402 . . . 4 3 ∈ ℕ0
31, 2deccl 12606 . . 3 23 ∈ ℕ0
4 5nn0 12404 . . 3 5 ∈ ℕ0
53, 4deccl 12606 . 2 235 ∈ ℕ0
6 7nn0 12406 . . 3 7 ∈ ℕ0
7 1nn0 12400 . . 3 1 ∈ ℕ0
86, 7deccl 12606 . 2 71 ∈ ℕ0
9 eqid 2729 . 2 711 = 711
10 eqid 2729 . . 3 71 = 71
11 eqid 2729 . . 3 23 = 23
12 8nn0 12407 . . 3 8 ∈ ℕ0
13 eqid 2729 . . . 4 235 = 235
143nn0cni 12396 . . . . 5 23 ∈ ℂ
15 2cn 12203 . . . . 5 2 ∈ ℂ
16 3p2e5 12274 . . . . . 6 (3 + 2) = 5
171, 2, 1, 11, 16decaddi 12651 . . . . 5 (23 + 2) = 25
1814, 15, 17addcomli 11308 . . . 4 (2 + 23) = 25
19 0nn0 12399 . . . 4 0 ∈ ℕ0
20 4nn0 12403 . . . 4 4 ∈ ℕ0
21 6nn0 12405 . . . . . 6 6 ∈ ℕ0
227, 21deccl 12606 . . . . 5 16 ∈ ℕ0
231, 20nn0addcli 12421 . . . . 5 (2 + 4) ∈ ℕ0
24 7cn 12222 . . . . . . . 8 7 ∈ ℂ
25 7t2e14 12700 . . . . . . . 8 (7 · 2) = 14
2624, 15, 25mulcomli 11124 . . . . . . 7 (2 · 7) = 14
27 4p2e6 12276 . . . . . . 7 (4 + 2) = 6
287, 20, 1, 26, 27decaddi 12651 . . . . . 6 ((2 · 7) + 2) = 16
29 3cn 12209 . . . . . . 7 3 ∈ ℂ
30 7t3e21 12701 . . . . . . 7 (7 · 3) = 21
3124, 29, 30mulcomli 11124 . . . . . 6 (3 · 7) = 21
326, 1, 2, 11, 7, 1, 28, 31decmul1c 12656 . . . . 5 (23 · 7) = 161
33 4cn 12213 . . . . . . 7 4 ∈ ℂ
3415, 33addcli 11121 . . . . . 6 (2 + 4) ∈ ℂ
35 ax-1cn 11067 . . . . . 6 1 ∈ ℂ
3633, 15, 27addcomli 11308 . . . . . . . 8 (2 + 4) = 6
3736oveq1i 7359 . . . . . . 7 ((2 + 4) + 1) = (6 + 1)
38 6p1e7 12271 . . . . . . 7 (6 + 1) = 7
3937, 38eqtri 2752 . . . . . 6 ((2 + 4) + 1) = 7
4034, 35, 39addcomli 11308 . . . . 5 (1 + (2 + 4)) = 7
4122, 7, 23, 32, 40decaddi 12651 . . . 4 ((23 · 7) + (2 + 4)) = 167
42 5cn 12216 . . . . . 6 5 ∈ ℂ
43 7t5e35 12703 . . . . . 6 (7 · 5) = 35
4424, 42, 43mulcomli 11124 . . . . 5 (5 · 7) = 35
45 3p1e4 12268 . . . . 5 (3 + 1) = 4
46 5p5e10 12662 . . . . 5 (5 + 5) = 10
472, 4, 4, 44, 45, 46decaddci2 12653 . . . 4 ((5 · 7) + 5) = 40
483, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47decmac 12643 . . 3 ((235 · 7) + (2 + 23)) = 1670
495nn0cni 12396 . . . . 5 235 ∈ ℂ
5049mulridi 11119 . . . 4 (235 · 1) = 235
51 5p3e8 12280 . . . 4 (5 + 3) = 8
523, 4, 2, 50, 51decaddi 12651 . . 3 ((235 · 1) + 3) = 238
536, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52decma2c 12644 . 2 ((235 · 71) + 23) = 16708
545, 8, 7, 9, 4, 3, 53, 50decmul2c 12657 1 (235 · 711) = 167085
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  2c2 12183  3c3 12184  4c4 12185  5c5 12186  6c6 12187  7c7 12188  8c8 12189  cdc 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-dec 12592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator