Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  235t711 Structured version   Visualization version   GIF version

Theorem 235t711 42354
Description: Calculate a product by long multiplication as a base comparison with other multiplication algorithms.

Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 11244 saving the lower level uses of mulcomli 11244 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12817 are added then this proof would benefit more than ex-decpmul 42355.

For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12375 or 8t7e56 12828. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.)

Assertion
Ref Expression
235t711 (235 · 711) = 167085

Proof of Theorem 235t711
StepHypRef Expression
1 2nn0 12518 . . . 4 2 ∈ ℕ0
2 3nn0 12519 . . . 4 3 ∈ ℕ0
31, 2deccl 12723 . . 3 23 ∈ ℕ0
4 5nn0 12521 . . 3 5 ∈ ℕ0
53, 4deccl 12723 . 2 235 ∈ ℕ0
6 7nn0 12523 . . 3 7 ∈ ℕ0
7 1nn0 12517 . . 3 1 ∈ ℕ0
86, 7deccl 12723 . 2 71 ∈ ℕ0
9 eqid 2735 . 2 711 = 711
10 eqid 2735 . . 3 71 = 71
11 eqid 2735 . . 3 23 = 23
12 8nn0 12524 . . 3 8 ∈ ℕ0
13 eqid 2735 . . . 4 235 = 235
143nn0cni 12513 . . . . 5 23 ∈ ℂ
15 2cn 12315 . . . . 5 2 ∈ ℂ
16 3p2e5 12391 . . . . . 6 (3 + 2) = 5
171, 2, 1, 11, 16decaddi 12768 . . . . 5 (23 + 2) = 25
1814, 15, 17addcomli 11427 . . . 4 (2 + 23) = 25
19 0nn0 12516 . . . 4 0 ∈ ℕ0
20 4nn0 12520 . . . 4 4 ∈ ℕ0
21 6nn0 12522 . . . . . 6 6 ∈ ℕ0
227, 21deccl 12723 . . . . 5 16 ∈ ℕ0
231, 20nn0addcli 12538 . . . . 5 (2 + 4) ∈ ℕ0
24 7cn 12334 . . . . . . . 8 7 ∈ ℂ
25 7t2e14 12817 . . . . . . . 8 (7 · 2) = 14
2624, 15, 25mulcomli 11244 . . . . . . 7 (2 · 7) = 14
27 4p2e6 12393 . . . . . . 7 (4 + 2) = 6
287, 20, 1, 26, 27decaddi 12768 . . . . . 6 ((2 · 7) + 2) = 16
29 3cn 12321 . . . . . . 7 3 ∈ ℂ
30 7t3e21 12818 . . . . . . 7 (7 · 3) = 21
3124, 29, 30mulcomli 11244 . . . . . 6 (3 · 7) = 21
326, 1, 2, 11, 7, 1, 28, 31decmul1c 12773 . . . . 5 (23 · 7) = 161
33 4cn 12325 . . . . . . 7 4 ∈ ℂ
3415, 33addcli 11241 . . . . . 6 (2 + 4) ∈ ℂ
35 ax-1cn 11187 . . . . . 6 1 ∈ ℂ
3633, 15, 27addcomli 11427 . . . . . . . 8 (2 + 4) = 6
3736oveq1i 7415 . . . . . . 7 ((2 + 4) + 1) = (6 + 1)
38 6p1e7 12388 . . . . . . 7 (6 + 1) = 7
3937, 38eqtri 2758 . . . . . 6 ((2 + 4) + 1) = 7
4034, 35, 39addcomli 11427 . . . . 5 (1 + (2 + 4)) = 7
4122, 7, 23, 32, 40decaddi 12768 . . . 4 ((23 · 7) + (2 + 4)) = 167
42 5cn 12328 . . . . . 6 5 ∈ ℂ
43 7t5e35 12820 . . . . . 6 (7 · 5) = 35
4424, 42, 43mulcomli 11244 . . . . 5 (5 · 7) = 35
45 3p1e4 12385 . . . . 5 (3 + 1) = 4
46 5p5e10 12779 . . . . 5 (5 + 5) = 10
472, 4, 4, 44, 45, 46decaddci2 12770 . . . 4 ((5 · 7) + 5) = 40
483, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47decmac 12760 . . 3 ((235 · 7) + (2 + 23)) = 1670
495nn0cni 12513 . . . . 5 235 ∈ ℂ
5049mulridi 11239 . . . 4 (235 · 1) = 235
51 5p3e8 12397 . . . 4 (5 + 3) = 8
523, 4, 2, 50, 51decaddi 12768 . . 3 ((235 · 1) + 3) = 238
536, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52decma2c 12761 . 2 ((235 · 71) + 23) = 16708
545, 8, 7, 9, 4, 3, 53, 50decmul2c 12774 1 (235 · 711) = 167085
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  2c2 12295  3c3 12296  4c4 12297  5c5 12298  6c6 12299  7c7 12300  8c8 12301  cdc 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-sub 11468  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-dec 12709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator