Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  235t711 Structured version   Visualization version   GIF version

Theorem 235t711 40569
Description: Calculate a product by long multiplication as a base comparison with other multiplication algorithms.

Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 11077 saving the lower level uses of mulcomli 11077 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12639 are added then this proof would benefit more than ex-decpmul 40570.

For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12201 or 8t7e56 12650. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.)

Assertion
Ref Expression
235t711 (235 · 711) = 167085

Proof of Theorem 235t711
StepHypRef Expression
1 2nn0 12343 . . . 4 2 ∈ ℕ0
2 3nn0 12344 . . . 4 3 ∈ ℕ0
31, 2deccl 12545 . . 3 23 ∈ ℕ0
4 5nn0 12346 . . 3 5 ∈ ℕ0
53, 4deccl 12545 . 2 235 ∈ ℕ0
6 7nn0 12348 . . 3 7 ∈ ℕ0
7 1nn0 12342 . . 3 1 ∈ ℕ0
86, 7deccl 12545 . 2 71 ∈ ℕ0
9 eqid 2736 . 2 711 = 711
10 eqid 2736 . . 3 71 = 71
11 eqid 2736 . . 3 23 = 23
12 8nn0 12349 . . 3 8 ∈ ℕ0
13 eqid 2736 . . . 4 235 = 235
143nn0cni 12338 . . . . 5 23 ∈ ℂ
15 2cn 12141 . . . . 5 2 ∈ ℂ
16 3p2e5 12217 . . . . . 6 (3 + 2) = 5
171, 2, 1, 11, 16decaddi 12590 . . . . 5 (23 + 2) = 25
1814, 15, 17addcomli 11260 . . . 4 (2 + 23) = 25
19 0nn0 12341 . . . 4 0 ∈ ℕ0
20 4nn0 12345 . . . 4 4 ∈ ℕ0
21 6nn0 12347 . . . . . 6 6 ∈ ℕ0
227, 21deccl 12545 . . . . 5 16 ∈ ℕ0
231, 20nn0addcli 12363 . . . . 5 (2 + 4) ∈ ℕ0
24 7cn 12160 . . . . . . . 8 7 ∈ ℂ
25 7t2e14 12639 . . . . . . . 8 (7 · 2) = 14
2624, 15, 25mulcomli 11077 . . . . . . 7 (2 · 7) = 14
27 4p2e6 12219 . . . . . . 7 (4 + 2) = 6
287, 20, 1, 26, 27decaddi 12590 . . . . . 6 ((2 · 7) + 2) = 16
29 3cn 12147 . . . . . . 7 3 ∈ ℂ
30 7t3e21 12640 . . . . . . 7 (7 · 3) = 21
3124, 29, 30mulcomli 11077 . . . . . 6 (3 · 7) = 21
326, 1, 2, 11, 7, 1, 28, 31decmul1c 12595 . . . . 5 (23 · 7) = 161
33 4cn 12151 . . . . . . 7 4 ∈ ℂ
3415, 33addcli 11074 . . . . . 6 (2 + 4) ∈ ℂ
35 ax-1cn 11022 . . . . . 6 1 ∈ ℂ
3633, 15, 27addcomli 11260 . . . . . . . 8 (2 + 4) = 6
3736oveq1i 7339 . . . . . . 7 ((2 + 4) + 1) = (6 + 1)
38 6p1e7 12214 . . . . . . 7 (6 + 1) = 7
3937, 38eqtri 2764 . . . . . 6 ((2 + 4) + 1) = 7
4034, 35, 39addcomli 11260 . . . . 5 (1 + (2 + 4)) = 7
4122, 7, 23, 32, 40decaddi 12590 . . . 4 ((23 · 7) + (2 + 4)) = 167
42 5cn 12154 . . . . . 6 5 ∈ ℂ
43 7t5e35 12642 . . . . . 6 (7 · 5) = 35
4424, 42, 43mulcomli 11077 . . . . 5 (5 · 7) = 35
45 3p1e4 12211 . . . . 5 (3 + 1) = 4
46 5p5e10 12601 . . . . 5 (5 + 5) = 10
472, 4, 4, 44, 45, 46decaddci2 12592 . . . 4 ((5 · 7) + 5) = 40
483, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47decmac 12582 . . 3 ((235 · 7) + (2 + 23)) = 1670
495nn0cni 12338 . . . . 5 235 ∈ ℂ
5049mulid1i 11072 . . . 4 (235 · 1) = 235
51 5p3e8 12223 . . . 4 (5 + 3) = 8
523, 4, 2, 50, 51decaddi 12590 . . 3 ((235 · 1) + 3) = 238
536, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52decma2c 12583 . 2 ((235 · 71) + 23) = 16708
545, 8, 7, 9, 4, 3, 53, 50decmul2c 12596 1 (235 · 711) = 167085
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7329  0cc0 10964  1c1 10965   + caddc 10967   · cmul 10969  2c2 12121  3c3 12122  4c4 12123  5c5 12124  6c6 12125  7c7 12126  8c8 12127  cdc 12530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-ltxr 11107  df-sub 11300  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-dec 12531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator