Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 235t711 | Structured version Visualization version GIF version |
Description: Calculate a product by
long multiplication as a base comparison with other
multiplication algorithms.
Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 10968 saving the lower level uses of mulcomli 10968 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12528 are added then this proof would benefit more than ex-decpmul 40300. For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12091 or 8t7e56 12539. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
235t711 | ⊢ (;;235 · ;;711) = ;;;;;167085 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12233 | . . . 4 ⊢ 2 ∈ ℕ0 | |
2 | 3nn0 12234 | . . . 4 ⊢ 3 ∈ ℕ0 | |
3 | 1, 2 | deccl 12434 | . . 3 ⊢ ;23 ∈ ℕ0 |
4 | 5nn0 12236 | . . 3 ⊢ 5 ∈ ℕ0 | |
5 | 3, 4 | deccl 12434 | . 2 ⊢ ;;235 ∈ ℕ0 |
6 | 7nn0 12238 | . . 3 ⊢ 7 ∈ ℕ0 | |
7 | 1nn0 12232 | . . 3 ⊢ 1 ∈ ℕ0 | |
8 | 6, 7 | deccl 12434 | . 2 ⊢ ;71 ∈ ℕ0 |
9 | eqid 2739 | . 2 ⊢ ;;711 = ;;711 | |
10 | eqid 2739 | . . 3 ⊢ ;71 = ;71 | |
11 | eqid 2739 | . . 3 ⊢ ;23 = ;23 | |
12 | 8nn0 12239 | . . 3 ⊢ 8 ∈ ℕ0 | |
13 | eqid 2739 | . . . 4 ⊢ ;;235 = ;;235 | |
14 | 3 | nn0cni 12228 | . . . . 5 ⊢ ;23 ∈ ℂ |
15 | 2cn 12031 | . . . . 5 ⊢ 2 ∈ ℂ | |
16 | 3p2e5 12107 | . . . . . 6 ⊢ (3 + 2) = 5 | |
17 | 1, 2, 1, 11, 16 | decaddi 12479 | . . . . 5 ⊢ (;23 + 2) = ;25 |
18 | 14, 15, 17 | addcomli 11150 | . . . 4 ⊢ (2 + ;23) = ;25 |
19 | 0nn0 12231 | . . . 4 ⊢ 0 ∈ ℕ0 | |
20 | 4nn0 12235 | . . . 4 ⊢ 4 ∈ ℕ0 | |
21 | 6nn0 12237 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
22 | 7, 21 | deccl 12434 | . . . . 5 ⊢ ;16 ∈ ℕ0 |
23 | 1, 20 | nn0addcli 12253 | . . . . 5 ⊢ (2 + 4) ∈ ℕ0 |
24 | 7cn 12050 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
25 | 7t2e14 12528 | . . . . . . . 8 ⊢ (7 · 2) = ;14 | |
26 | 24, 15, 25 | mulcomli 10968 | . . . . . . 7 ⊢ (2 · 7) = ;14 |
27 | 4p2e6 12109 | . . . . . . 7 ⊢ (4 + 2) = 6 | |
28 | 7, 20, 1, 26, 27 | decaddi 12479 | . . . . . 6 ⊢ ((2 · 7) + 2) = ;16 |
29 | 3cn 12037 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
30 | 7t3e21 12529 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
31 | 24, 29, 30 | mulcomli 10968 | . . . . . 6 ⊢ (3 · 7) = ;21 |
32 | 6, 1, 2, 11, 7, 1, 28, 31 | decmul1c 12484 | . . . . 5 ⊢ (;23 · 7) = ;;161 |
33 | 4cn 12041 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
34 | 15, 33 | addcli 10965 | . . . . . 6 ⊢ (2 + 4) ∈ ℂ |
35 | ax-1cn 10913 | . . . . . 6 ⊢ 1 ∈ ℂ | |
36 | 33, 15, 27 | addcomli 11150 | . . . . . . . 8 ⊢ (2 + 4) = 6 |
37 | 36 | oveq1i 7278 | . . . . . . 7 ⊢ ((2 + 4) + 1) = (6 + 1) |
38 | 6p1e7 12104 | . . . . . . 7 ⊢ (6 + 1) = 7 | |
39 | 37, 38 | eqtri 2767 | . . . . . 6 ⊢ ((2 + 4) + 1) = 7 |
40 | 34, 35, 39 | addcomli 11150 | . . . . 5 ⊢ (1 + (2 + 4)) = 7 |
41 | 22, 7, 23, 32, 40 | decaddi 12479 | . . . 4 ⊢ ((;23 · 7) + (2 + 4)) = ;;167 |
42 | 5cn 12044 | . . . . . 6 ⊢ 5 ∈ ℂ | |
43 | 7t5e35 12531 | . . . . . 6 ⊢ (7 · 5) = ;35 | |
44 | 24, 42, 43 | mulcomli 10968 | . . . . 5 ⊢ (5 · 7) = ;35 |
45 | 3p1e4 12101 | . . . . 5 ⊢ (3 + 1) = 4 | |
46 | 5p5e10 12490 | . . . . 5 ⊢ (5 + 5) = ;10 | |
47 | 2, 4, 4, 44, 45, 46 | decaddci2 12481 | . . . 4 ⊢ ((5 · 7) + 5) = ;40 |
48 | 3, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47 | decmac 12471 | . . 3 ⊢ ((;;235 · 7) + (2 + ;23)) = ;;;1670 |
49 | 5 | nn0cni 12228 | . . . . 5 ⊢ ;;235 ∈ ℂ |
50 | 49 | mulid1i 10963 | . . . 4 ⊢ (;;235 · 1) = ;;235 |
51 | 5p3e8 12113 | . . . 4 ⊢ (5 + 3) = 8 | |
52 | 3, 4, 2, 50, 51 | decaddi 12479 | . . 3 ⊢ ((;;235 · 1) + 3) = ;;238 |
53 | 6, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52 | decma2c 12472 | . 2 ⊢ ((;;235 · ;71) + ;23) = ;;;;16708 |
54 | 5, 8, 7, 9, 4, 3, 53, 50 | decmul2c 12485 | 1 ⊢ (;;235 · ;;711) = ;;;;;167085 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 (class class class)co 7268 0cc0 10855 1c1 10856 + caddc 10858 · cmul 10860 2c2 12011 3c3 12012 4c4 12013 5c5 12014 6c6 12015 7c7 12016 8c8 12017 ;cdc 12419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-ltxr 10998 df-sub 11190 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-dec 12420 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |