Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  235t711 Structured version   Visualization version   GIF version

Theorem 235t711 41200
Description: Calculate a product by long multiplication as a base comparison with other multiplication algorithms.

Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 11219 saving the lower level uses of mulcomli 11219 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12782 are added then this proof would benefit more than ex-decpmul 41201.

For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12343 or 8t7e56 12793. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.)

Assertion
Ref Expression
235t711 (235 · 711) = 167085

Proof of Theorem 235t711
StepHypRef Expression
1 2nn0 12485 . . . 4 2 ∈ ℕ0
2 3nn0 12486 . . . 4 3 ∈ ℕ0
31, 2deccl 12688 . . 3 23 ∈ ℕ0
4 5nn0 12488 . . 3 5 ∈ ℕ0
53, 4deccl 12688 . 2 235 ∈ ℕ0
6 7nn0 12490 . . 3 7 ∈ ℕ0
7 1nn0 12484 . . 3 1 ∈ ℕ0
86, 7deccl 12688 . 2 71 ∈ ℕ0
9 eqid 2732 . 2 711 = 711
10 eqid 2732 . . 3 71 = 71
11 eqid 2732 . . 3 23 = 23
12 8nn0 12491 . . 3 8 ∈ ℕ0
13 eqid 2732 . . . 4 235 = 235
143nn0cni 12480 . . . . 5 23 ∈ ℂ
15 2cn 12283 . . . . 5 2 ∈ ℂ
16 3p2e5 12359 . . . . . 6 (3 + 2) = 5
171, 2, 1, 11, 16decaddi 12733 . . . . 5 (23 + 2) = 25
1814, 15, 17addcomli 11402 . . . 4 (2 + 23) = 25
19 0nn0 12483 . . . 4 0 ∈ ℕ0
20 4nn0 12487 . . . 4 4 ∈ ℕ0
21 6nn0 12489 . . . . . 6 6 ∈ ℕ0
227, 21deccl 12688 . . . . 5 16 ∈ ℕ0
231, 20nn0addcli 12505 . . . . 5 (2 + 4) ∈ ℕ0
24 7cn 12302 . . . . . . . 8 7 ∈ ℂ
25 7t2e14 12782 . . . . . . . 8 (7 · 2) = 14
2624, 15, 25mulcomli 11219 . . . . . . 7 (2 · 7) = 14
27 4p2e6 12361 . . . . . . 7 (4 + 2) = 6
287, 20, 1, 26, 27decaddi 12733 . . . . . 6 ((2 · 7) + 2) = 16
29 3cn 12289 . . . . . . 7 3 ∈ ℂ
30 7t3e21 12783 . . . . . . 7 (7 · 3) = 21
3124, 29, 30mulcomli 11219 . . . . . 6 (3 · 7) = 21
326, 1, 2, 11, 7, 1, 28, 31decmul1c 12738 . . . . 5 (23 · 7) = 161
33 4cn 12293 . . . . . . 7 4 ∈ ℂ
3415, 33addcli 11216 . . . . . 6 (2 + 4) ∈ ℂ
35 ax-1cn 11164 . . . . . 6 1 ∈ ℂ
3633, 15, 27addcomli 11402 . . . . . . . 8 (2 + 4) = 6
3736oveq1i 7415 . . . . . . 7 ((2 + 4) + 1) = (6 + 1)
38 6p1e7 12356 . . . . . . 7 (6 + 1) = 7
3937, 38eqtri 2760 . . . . . 6 ((2 + 4) + 1) = 7
4034, 35, 39addcomli 11402 . . . . 5 (1 + (2 + 4)) = 7
4122, 7, 23, 32, 40decaddi 12733 . . . 4 ((23 · 7) + (2 + 4)) = 167
42 5cn 12296 . . . . . 6 5 ∈ ℂ
43 7t5e35 12785 . . . . . 6 (7 · 5) = 35
4424, 42, 43mulcomli 11219 . . . . 5 (5 · 7) = 35
45 3p1e4 12353 . . . . 5 (3 + 1) = 4
46 5p5e10 12744 . . . . 5 (5 + 5) = 10
472, 4, 4, 44, 45, 46decaddci2 12735 . . . 4 ((5 · 7) + 5) = 40
483, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47decmac 12725 . . 3 ((235 · 7) + (2 + 23)) = 1670
495nn0cni 12480 . . . . 5 235 ∈ ℂ
5049mulridi 11214 . . . 4 (235 · 1) = 235
51 5p3e8 12365 . . . 4 (5 + 3) = 8
523, 4, 2, 50, 51decaddi 12733 . . 3 ((235 · 1) + 3) = 238
536, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52decma2c 12726 . 2 ((235 · 71) + 23) = 16708
545, 8, 7, 9, 4, 3, 53, 50decmul2c 12739 1 (235 · 711) = 167085
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7405  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111  2c2 12263  3c3 12264  4c4 12265  5c5 12266  6c6 12267  7c7 12268  8c8 12269  cdc 12673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-ltxr 11249  df-sub 11442  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-dec 12674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator