Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  235t711 Structured version   Visualization version   GIF version

Theorem 235t711 42408
Description: Calculate a product by long multiplication as a base comparison with other multiplication algorithms.

Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 11121 saving the lower level uses of mulcomli 11121 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12697 are added then this proof would benefit more than ex-decpmul 42409.

For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12255 or 8t7e56 12708. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.)

Assertion
Ref Expression
235t711 (235 · 711) = 167085

Proof of Theorem 235t711
StepHypRef Expression
1 2nn0 12398 . . . 4 2 ∈ ℕ0
2 3nn0 12399 . . . 4 3 ∈ ℕ0
31, 2deccl 12603 . . 3 23 ∈ ℕ0
4 5nn0 12401 . . 3 5 ∈ ℕ0
53, 4deccl 12603 . 2 235 ∈ ℕ0
6 7nn0 12403 . . 3 7 ∈ ℕ0
7 1nn0 12397 . . 3 1 ∈ ℕ0
86, 7deccl 12603 . 2 71 ∈ ℕ0
9 eqid 2731 . 2 711 = 711
10 eqid 2731 . . 3 71 = 71
11 eqid 2731 . . 3 23 = 23
12 8nn0 12404 . . 3 8 ∈ ℕ0
13 eqid 2731 . . . 4 235 = 235
143nn0cni 12393 . . . . 5 23 ∈ ℂ
15 2cn 12200 . . . . 5 2 ∈ ℂ
16 3p2e5 12271 . . . . . 6 (3 + 2) = 5
171, 2, 1, 11, 16decaddi 12648 . . . . 5 (23 + 2) = 25
1814, 15, 17addcomli 11305 . . . 4 (2 + 23) = 25
19 0nn0 12396 . . . 4 0 ∈ ℕ0
20 4nn0 12400 . . . 4 4 ∈ ℕ0
21 6nn0 12402 . . . . . 6 6 ∈ ℕ0
227, 21deccl 12603 . . . . 5 16 ∈ ℕ0
231, 20nn0addcli 12418 . . . . 5 (2 + 4) ∈ ℕ0
24 7cn 12219 . . . . . . . 8 7 ∈ ℂ
25 7t2e14 12697 . . . . . . . 8 (7 · 2) = 14
2624, 15, 25mulcomli 11121 . . . . . . 7 (2 · 7) = 14
27 4p2e6 12273 . . . . . . 7 (4 + 2) = 6
287, 20, 1, 26, 27decaddi 12648 . . . . . 6 ((2 · 7) + 2) = 16
29 3cn 12206 . . . . . . 7 3 ∈ ℂ
30 7t3e21 12698 . . . . . . 7 (7 · 3) = 21
3124, 29, 30mulcomli 11121 . . . . . 6 (3 · 7) = 21
326, 1, 2, 11, 7, 1, 28, 31decmul1c 12653 . . . . 5 (23 · 7) = 161
33 4cn 12210 . . . . . . 7 4 ∈ ℂ
3415, 33addcli 11118 . . . . . 6 (2 + 4) ∈ ℂ
35 ax-1cn 11064 . . . . . 6 1 ∈ ℂ
3633, 15, 27addcomli 11305 . . . . . . . 8 (2 + 4) = 6
3736oveq1i 7356 . . . . . . 7 ((2 + 4) + 1) = (6 + 1)
38 6p1e7 12268 . . . . . . 7 (6 + 1) = 7
3937, 38eqtri 2754 . . . . . 6 ((2 + 4) + 1) = 7
4034, 35, 39addcomli 11305 . . . . 5 (1 + (2 + 4)) = 7
4122, 7, 23, 32, 40decaddi 12648 . . . 4 ((23 · 7) + (2 + 4)) = 167
42 5cn 12213 . . . . . 6 5 ∈ ℂ
43 7t5e35 12700 . . . . . 6 (7 · 5) = 35
4424, 42, 43mulcomli 11121 . . . . 5 (5 · 7) = 35
45 3p1e4 12265 . . . . 5 (3 + 1) = 4
46 5p5e10 12659 . . . . 5 (5 + 5) = 10
472, 4, 4, 44, 45, 46decaddci2 12650 . . . 4 ((5 · 7) + 5) = 40
483, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47decmac 12640 . . 3 ((235 · 7) + (2 + 23)) = 1670
495nn0cni 12393 . . . . 5 235 ∈ ℂ
5049mulridi 11116 . . . 4 (235 · 1) = 235
51 5p3e8 12277 . . . 4 (5 + 3) = 8
523, 4, 2, 50, 51decaddi 12648 . . 3 ((235 · 1) + 3) = 238
536, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52decma2c 12641 . 2 ((235 · 71) + 23) = 16708
545, 8, 7, 9, 4, 3, 53, 50decmul2c 12654 1 (235 · 711) = 167085
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7346  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  2c2 12180  3c3 12181  4c4 12182  5c5 12183  6c6 12184  7c7 12185  8c8 12186  cdc 12588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-dec 12589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator