Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  235t711 Structured version   Visualization version   GIF version

Theorem 235t711 41745
Description: Calculate a product by long multiplication as a base comparison with other multiplication algorithms.

Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 11224 saving the lower level uses of mulcomli 11224 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12787 are added then this proof would benefit more than ex-decpmul 41746.

For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12348 or 8t7e56 12798. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.)

Assertion
Ref Expression
235t711 (235 · 711) = 167085

Proof of Theorem 235t711
StepHypRef Expression
1 2nn0 12490 . . . 4 2 ∈ ℕ0
2 3nn0 12491 . . . 4 3 ∈ ℕ0
31, 2deccl 12693 . . 3 23 ∈ ℕ0
4 5nn0 12493 . . 3 5 ∈ ℕ0
53, 4deccl 12693 . 2 235 ∈ ℕ0
6 7nn0 12495 . . 3 7 ∈ ℕ0
7 1nn0 12489 . . 3 1 ∈ ℕ0
86, 7deccl 12693 . 2 71 ∈ ℕ0
9 eqid 2726 . 2 711 = 711
10 eqid 2726 . . 3 71 = 71
11 eqid 2726 . . 3 23 = 23
12 8nn0 12496 . . 3 8 ∈ ℕ0
13 eqid 2726 . . . 4 235 = 235
143nn0cni 12485 . . . . 5 23 ∈ ℂ
15 2cn 12288 . . . . 5 2 ∈ ℂ
16 3p2e5 12364 . . . . . 6 (3 + 2) = 5
171, 2, 1, 11, 16decaddi 12738 . . . . 5 (23 + 2) = 25
1814, 15, 17addcomli 11407 . . . 4 (2 + 23) = 25
19 0nn0 12488 . . . 4 0 ∈ ℕ0
20 4nn0 12492 . . . 4 4 ∈ ℕ0
21 6nn0 12494 . . . . . 6 6 ∈ ℕ0
227, 21deccl 12693 . . . . 5 16 ∈ ℕ0
231, 20nn0addcli 12510 . . . . 5 (2 + 4) ∈ ℕ0
24 7cn 12307 . . . . . . . 8 7 ∈ ℂ
25 7t2e14 12787 . . . . . . . 8 (7 · 2) = 14
2624, 15, 25mulcomli 11224 . . . . . . 7 (2 · 7) = 14
27 4p2e6 12366 . . . . . . 7 (4 + 2) = 6
287, 20, 1, 26, 27decaddi 12738 . . . . . 6 ((2 · 7) + 2) = 16
29 3cn 12294 . . . . . . 7 3 ∈ ℂ
30 7t3e21 12788 . . . . . . 7 (7 · 3) = 21
3124, 29, 30mulcomli 11224 . . . . . 6 (3 · 7) = 21
326, 1, 2, 11, 7, 1, 28, 31decmul1c 12743 . . . . 5 (23 · 7) = 161
33 4cn 12298 . . . . . . 7 4 ∈ ℂ
3415, 33addcli 11221 . . . . . 6 (2 + 4) ∈ ℂ
35 ax-1cn 11167 . . . . . 6 1 ∈ ℂ
3633, 15, 27addcomli 11407 . . . . . . . 8 (2 + 4) = 6
3736oveq1i 7414 . . . . . . 7 ((2 + 4) + 1) = (6 + 1)
38 6p1e7 12361 . . . . . . 7 (6 + 1) = 7
3937, 38eqtri 2754 . . . . . 6 ((2 + 4) + 1) = 7
4034, 35, 39addcomli 11407 . . . . 5 (1 + (2 + 4)) = 7
4122, 7, 23, 32, 40decaddi 12738 . . . 4 ((23 · 7) + (2 + 4)) = 167
42 5cn 12301 . . . . . 6 5 ∈ ℂ
43 7t5e35 12790 . . . . . 6 (7 · 5) = 35
4424, 42, 43mulcomli 11224 . . . . 5 (5 · 7) = 35
45 3p1e4 12358 . . . . 5 (3 + 1) = 4
46 5p5e10 12749 . . . . 5 (5 + 5) = 10
472, 4, 4, 44, 45, 46decaddci2 12740 . . . 4 ((5 · 7) + 5) = 40
483, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47decmac 12730 . . 3 ((235 · 7) + (2 + 23)) = 1670
495nn0cni 12485 . . . . 5 235 ∈ ℂ
5049mulridi 11219 . . . 4 (235 · 1) = 235
51 5p3e8 12370 . . . 4 (5 + 3) = 8
523, 4, 2, 50, 51decaddi 12738 . . 3 ((235 · 1) + 3) = 238
536, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52decma2c 12731 . 2 ((235 · 71) + 23) = 16708
545, 8, 7, 9, 4, 3, 53, 50decmul2c 12744 1 (235 · 711) = 167085
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  (class class class)co 7404  0cc0 11109  1c1 11110   + caddc 11112   · cmul 11114  2c2 12268  3c3 12269  4c4 12270  5c5 12271  6c6 12272  7c7 12273  8c8 12274  cdc 12678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-ltxr 11254  df-sub 11447  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-dec 12679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator