Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  235t711 Structured version   Visualization version   GIF version

Theorem 235t711 42293
Description: Calculate a product by long multiplication as a base comparison with other multiplication algorithms.

Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 11299 saving the lower level uses of mulcomli 11299 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12867 are added then this proof would benefit more than ex-decpmul 42294.

For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12428 or 8t7e56 12878. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.)

Assertion
Ref Expression
235t711 (235 · 711) = 167085

Proof of Theorem 235t711
StepHypRef Expression
1 2nn0 12570 . . . 4 2 ∈ ℕ0
2 3nn0 12571 . . . 4 3 ∈ ℕ0
31, 2deccl 12773 . . 3 23 ∈ ℕ0
4 5nn0 12573 . . 3 5 ∈ ℕ0
53, 4deccl 12773 . 2 235 ∈ ℕ0
6 7nn0 12575 . . 3 7 ∈ ℕ0
7 1nn0 12569 . . 3 1 ∈ ℕ0
86, 7deccl 12773 . 2 71 ∈ ℕ0
9 eqid 2740 . 2 711 = 711
10 eqid 2740 . . 3 71 = 71
11 eqid 2740 . . 3 23 = 23
12 8nn0 12576 . . 3 8 ∈ ℕ0
13 eqid 2740 . . . 4 235 = 235
143nn0cni 12565 . . . . 5 23 ∈ ℂ
15 2cn 12368 . . . . 5 2 ∈ ℂ
16 3p2e5 12444 . . . . . 6 (3 + 2) = 5
171, 2, 1, 11, 16decaddi 12818 . . . . 5 (23 + 2) = 25
1814, 15, 17addcomli 11482 . . . 4 (2 + 23) = 25
19 0nn0 12568 . . . 4 0 ∈ ℕ0
20 4nn0 12572 . . . 4 4 ∈ ℕ0
21 6nn0 12574 . . . . . 6 6 ∈ ℕ0
227, 21deccl 12773 . . . . 5 16 ∈ ℕ0
231, 20nn0addcli 12590 . . . . 5 (2 + 4) ∈ ℕ0
24 7cn 12387 . . . . . . . 8 7 ∈ ℂ
25 7t2e14 12867 . . . . . . . 8 (7 · 2) = 14
2624, 15, 25mulcomli 11299 . . . . . . 7 (2 · 7) = 14
27 4p2e6 12446 . . . . . . 7 (4 + 2) = 6
287, 20, 1, 26, 27decaddi 12818 . . . . . 6 ((2 · 7) + 2) = 16
29 3cn 12374 . . . . . . 7 3 ∈ ℂ
30 7t3e21 12868 . . . . . . 7 (7 · 3) = 21
3124, 29, 30mulcomli 11299 . . . . . 6 (3 · 7) = 21
326, 1, 2, 11, 7, 1, 28, 31decmul1c 12823 . . . . 5 (23 · 7) = 161
33 4cn 12378 . . . . . . 7 4 ∈ ℂ
3415, 33addcli 11296 . . . . . 6 (2 + 4) ∈ ℂ
35 ax-1cn 11242 . . . . . 6 1 ∈ ℂ
3633, 15, 27addcomli 11482 . . . . . . . 8 (2 + 4) = 6
3736oveq1i 7458 . . . . . . 7 ((2 + 4) + 1) = (6 + 1)
38 6p1e7 12441 . . . . . . 7 (6 + 1) = 7
3937, 38eqtri 2768 . . . . . 6 ((2 + 4) + 1) = 7
4034, 35, 39addcomli 11482 . . . . 5 (1 + (2 + 4)) = 7
4122, 7, 23, 32, 40decaddi 12818 . . . 4 ((23 · 7) + (2 + 4)) = 167
42 5cn 12381 . . . . . 6 5 ∈ ℂ
43 7t5e35 12870 . . . . . 6 (7 · 5) = 35
4424, 42, 43mulcomli 11299 . . . . 5 (5 · 7) = 35
45 3p1e4 12438 . . . . 5 (3 + 1) = 4
46 5p5e10 12829 . . . . 5 (5 + 5) = 10
472, 4, 4, 44, 45, 46decaddci2 12820 . . . 4 ((5 · 7) + 5) = 40
483, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47decmac 12810 . . 3 ((235 · 7) + (2 + 23)) = 1670
495nn0cni 12565 . . . . 5 235 ∈ ℂ
5049mulridi 11294 . . . 4 (235 · 1) = 235
51 5p3e8 12450 . . . 4 (5 + 3) = 8
523, 4, 2, 50, 51decaddi 12818 . . 3 ((235 · 1) + 3) = 238
536, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52decma2c 12811 . 2 ((235 · 71) + 23) = 16708
545, 8, 7, 9, 4, 3, 53, 50decmul2c 12824 1 (235 · 711) = 167085
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  2c2 12348  3c3 12349  4c4 12350  5c5 12351  6c6 12352  7c7 12353  8c8 12354  cdc 12758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-dec 12759
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator