Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  235t711 Structured version   Visualization version   GIF version

Theorem 235t711 40299
Description: Calculate a product by long multiplication as a base comparison with other multiplication algorithms.

Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 10968 saving the lower level uses of mulcomli 10968 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12528 are added then this proof would benefit more than ex-decpmul 40300.

For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12091 or 8t7e56 12539. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.)

Assertion
Ref Expression
235t711 (235 · 711) = 167085

Proof of Theorem 235t711
StepHypRef Expression
1 2nn0 12233 . . . 4 2 ∈ ℕ0
2 3nn0 12234 . . . 4 3 ∈ ℕ0
31, 2deccl 12434 . . 3 23 ∈ ℕ0
4 5nn0 12236 . . 3 5 ∈ ℕ0
53, 4deccl 12434 . 2 235 ∈ ℕ0
6 7nn0 12238 . . 3 7 ∈ ℕ0
7 1nn0 12232 . . 3 1 ∈ ℕ0
86, 7deccl 12434 . 2 71 ∈ ℕ0
9 eqid 2739 . 2 711 = 711
10 eqid 2739 . . 3 71 = 71
11 eqid 2739 . . 3 23 = 23
12 8nn0 12239 . . 3 8 ∈ ℕ0
13 eqid 2739 . . . 4 235 = 235
143nn0cni 12228 . . . . 5 23 ∈ ℂ
15 2cn 12031 . . . . 5 2 ∈ ℂ
16 3p2e5 12107 . . . . . 6 (3 + 2) = 5
171, 2, 1, 11, 16decaddi 12479 . . . . 5 (23 + 2) = 25
1814, 15, 17addcomli 11150 . . . 4 (2 + 23) = 25
19 0nn0 12231 . . . 4 0 ∈ ℕ0
20 4nn0 12235 . . . 4 4 ∈ ℕ0
21 6nn0 12237 . . . . . 6 6 ∈ ℕ0
227, 21deccl 12434 . . . . 5 16 ∈ ℕ0
231, 20nn0addcli 12253 . . . . 5 (2 + 4) ∈ ℕ0
24 7cn 12050 . . . . . . . 8 7 ∈ ℂ
25 7t2e14 12528 . . . . . . . 8 (7 · 2) = 14
2624, 15, 25mulcomli 10968 . . . . . . 7 (2 · 7) = 14
27 4p2e6 12109 . . . . . . 7 (4 + 2) = 6
287, 20, 1, 26, 27decaddi 12479 . . . . . 6 ((2 · 7) + 2) = 16
29 3cn 12037 . . . . . . 7 3 ∈ ℂ
30 7t3e21 12529 . . . . . . 7 (7 · 3) = 21
3124, 29, 30mulcomli 10968 . . . . . 6 (3 · 7) = 21
326, 1, 2, 11, 7, 1, 28, 31decmul1c 12484 . . . . 5 (23 · 7) = 161
33 4cn 12041 . . . . . . 7 4 ∈ ℂ
3415, 33addcli 10965 . . . . . 6 (2 + 4) ∈ ℂ
35 ax-1cn 10913 . . . . . 6 1 ∈ ℂ
3633, 15, 27addcomli 11150 . . . . . . . 8 (2 + 4) = 6
3736oveq1i 7278 . . . . . . 7 ((2 + 4) + 1) = (6 + 1)
38 6p1e7 12104 . . . . . . 7 (6 + 1) = 7
3937, 38eqtri 2767 . . . . . 6 ((2 + 4) + 1) = 7
4034, 35, 39addcomli 11150 . . . . 5 (1 + (2 + 4)) = 7
4122, 7, 23, 32, 40decaddi 12479 . . . 4 ((23 · 7) + (2 + 4)) = 167
42 5cn 12044 . . . . . 6 5 ∈ ℂ
43 7t5e35 12531 . . . . . 6 (7 · 5) = 35
4424, 42, 43mulcomli 10968 . . . . 5 (5 · 7) = 35
45 3p1e4 12101 . . . . 5 (3 + 1) = 4
46 5p5e10 12490 . . . . 5 (5 + 5) = 10
472, 4, 4, 44, 45, 46decaddci2 12481 . . . 4 ((5 · 7) + 5) = 40
483, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47decmac 12471 . . 3 ((235 · 7) + (2 + 23)) = 1670
495nn0cni 12228 . . . . 5 235 ∈ ℂ
5049mulid1i 10963 . . . 4 (235 · 1) = 235
51 5p3e8 12113 . . . 4 (5 + 3) = 8
523, 4, 2, 50, 51decaddi 12479 . . 3 ((235 · 1) + 3) = 238
536, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52decma2c 12472 . 2 ((235 · 71) + 23) = 16708
545, 8, 7, 9, 4, 3, 53, 50decmul2c 12485 1 (235 · 711) = 167085
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7268  0cc0 10855  1c1 10856   + caddc 10858   · cmul 10860  2c2 12011  3c3 12012  4c4 12013  5c5 12014  6c6 12015  7c7 12016  8c8 12017  cdc 12419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-ltxr 10998  df-sub 11190  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-dec 12420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator