Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 235t711 | Structured version Visualization version GIF version |
Description: Calculate a product by
long multiplication as a base comparison with other
multiplication algorithms.
Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 11034 saving the lower level uses of mulcomli 11034 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12596 are added then this proof would benefit more than ex-decpmul 40515. For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12158 or 8t7e56 12607. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
235t711 | ⊢ (;;235 · ;;711) = ;;;;;167085 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12300 | . . . 4 ⊢ 2 ∈ ℕ0 | |
2 | 3nn0 12301 | . . . 4 ⊢ 3 ∈ ℕ0 | |
3 | 1, 2 | deccl 12502 | . . 3 ⊢ ;23 ∈ ℕ0 |
4 | 5nn0 12303 | . . 3 ⊢ 5 ∈ ℕ0 | |
5 | 3, 4 | deccl 12502 | . 2 ⊢ ;;235 ∈ ℕ0 |
6 | 7nn0 12305 | . . 3 ⊢ 7 ∈ ℕ0 | |
7 | 1nn0 12299 | . . 3 ⊢ 1 ∈ ℕ0 | |
8 | 6, 7 | deccl 12502 | . 2 ⊢ ;71 ∈ ℕ0 |
9 | eqid 2736 | . 2 ⊢ ;;711 = ;;711 | |
10 | eqid 2736 | . . 3 ⊢ ;71 = ;71 | |
11 | eqid 2736 | . . 3 ⊢ ;23 = ;23 | |
12 | 8nn0 12306 | . . 3 ⊢ 8 ∈ ℕ0 | |
13 | eqid 2736 | . . . 4 ⊢ ;;235 = ;;235 | |
14 | 3 | nn0cni 12295 | . . . . 5 ⊢ ;23 ∈ ℂ |
15 | 2cn 12098 | . . . . 5 ⊢ 2 ∈ ℂ | |
16 | 3p2e5 12174 | . . . . . 6 ⊢ (3 + 2) = 5 | |
17 | 1, 2, 1, 11, 16 | decaddi 12547 | . . . . 5 ⊢ (;23 + 2) = ;25 |
18 | 14, 15, 17 | addcomli 11217 | . . . 4 ⊢ (2 + ;23) = ;25 |
19 | 0nn0 12298 | . . . 4 ⊢ 0 ∈ ℕ0 | |
20 | 4nn0 12302 | . . . 4 ⊢ 4 ∈ ℕ0 | |
21 | 6nn0 12304 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
22 | 7, 21 | deccl 12502 | . . . . 5 ⊢ ;16 ∈ ℕ0 |
23 | 1, 20 | nn0addcli 12320 | . . . . 5 ⊢ (2 + 4) ∈ ℕ0 |
24 | 7cn 12117 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
25 | 7t2e14 12596 | . . . . . . . 8 ⊢ (7 · 2) = ;14 | |
26 | 24, 15, 25 | mulcomli 11034 | . . . . . . 7 ⊢ (2 · 7) = ;14 |
27 | 4p2e6 12176 | . . . . . . 7 ⊢ (4 + 2) = 6 | |
28 | 7, 20, 1, 26, 27 | decaddi 12547 | . . . . . 6 ⊢ ((2 · 7) + 2) = ;16 |
29 | 3cn 12104 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
30 | 7t3e21 12597 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
31 | 24, 29, 30 | mulcomli 11034 | . . . . . 6 ⊢ (3 · 7) = ;21 |
32 | 6, 1, 2, 11, 7, 1, 28, 31 | decmul1c 12552 | . . . . 5 ⊢ (;23 · 7) = ;;161 |
33 | 4cn 12108 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
34 | 15, 33 | addcli 11031 | . . . . . 6 ⊢ (2 + 4) ∈ ℂ |
35 | ax-1cn 10979 | . . . . . 6 ⊢ 1 ∈ ℂ | |
36 | 33, 15, 27 | addcomli 11217 | . . . . . . . 8 ⊢ (2 + 4) = 6 |
37 | 36 | oveq1i 7317 | . . . . . . 7 ⊢ ((2 + 4) + 1) = (6 + 1) |
38 | 6p1e7 12171 | . . . . . . 7 ⊢ (6 + 1) = 7 | |
39 | 37, 38 | eqtri 2764 | . . . . . 6 ⊢ ((2 + 4) + 1) = 7 |
40 | 34, 35, 39 | addcomli 11217 | . . . . 5 ⊢ (1 + (2 + 4)) = 7 |
41 | 22, 7, 23, 32, 40 | decaddi 12547 | . . . 4 ⊢ ((;23 · 7) + (2 + 4)) = ;;167 |
42 | 5cn 12111 | . . . . . 6 ⊢ 5 ∈ ℂ | |
43 | 7t5e35 12599 | . . . . . 6 ⊢ (7 · 5) = ;35 | |
44 | 24, 42, 43 | mulcomli 11034 | . . . . 5 ⊢ (5 · 7) = ;35 |
45 | 3p1e4 12168 | . . . . 5 ⊢ (3 + 1) = 4 | |
46 | 5p5e10 12558 | . . . . 5 ⊢ (5 + 5) = ;10 | |
47 | 2, 4, 4, 44, 45, 46 | decaddci2 12549 | . . . 4 ⊢ ((5 · 7) + 5) = ;40 |
48 | 3, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47 | decmac 12539 | . . 3 ⊢ ((;;235 · 7) + (2 + ;23)) = ;;;1670 |
49 | 5 | nn0cni 12295 | . . . . 5 ⊢ ;;235 ∈ ℂ |
50 | 49 | mulid1i 11029 | . . . 4 ⊢ (;;235 · 1) = ;;235 |
51 | 5p3e8 12180 | . . . 4 ⊢ (5 + 3) = 8 | |
52 | 3, 4, 2, 50, 51 | decaddi 12547 | . . 3 ⊢ ((;;235 · 1) + 3) = ;;238 |
53 | 6, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52 | decma2c 12540 | . 2 ⊢ ((;;235 · ;71) + ;23) = ;;;;16708 |
54 | 5, 8, 7, 9, 4, 3, 53, 50 | decmul2c 12553 | 1 ⊢ (;;235 · ;;711) = ;;;;;167085 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7307 0cc0 10921 1c1 10922 + caddc 10924 · cmul 10926 2c2 12078 3c3 12079 4c4 12080 5c5 12081 6c6 12082 7c7 12083 8c8 12084 ;cdc 12487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-ltxr 11064 df-sub 11257 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-dec 12488 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |