![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 235t711 | Structured version Visualization version GIF version |
Description: Calculate a product by
long multiplication as a base comparison with other
multiplication algorithms.
Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 11224 saving the lower level uses of mulcomli 11224 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12787 are added then this proof would benefit more than ex-decpmul 41746. For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12348 or 8t7e56 12798. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.) |
Ref | Expression |
---|---|
235t711 | ⊢ (;;235 · ;;711) = ;;;;;167085 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12490 | . . . 4 ⊢ 2 ∈ ℕ0 | |
2 | 3nn0 12491 | . . . 4 ⊢ 3 ∈ ℕ0 | |
3 | 1, 2 | deccl 12693 | . . 3 ⊢ ;23 ∈ ℕ0 |
4 | 5nn0 12493 | . . 3 ⊢ 5 ∈ ℕ0 | |
5 | 3, 4 | deccl 12693 | . 2 ⊢ ;;235 ∈ ℕ0 |
6 | 7nn0 12495 | . . 3 ⊢ 7 ∈ ℕ0 | |
7 | 1nn0 12489 | . . 3 ⊢ 1 ∈ ℕ0 | |
8 | 6, 7 | deccl 12693 | . 2 ⊢ ;71 ∈ ℕ0 |
9 | eqid 2726 | . 2 ⊢ ;;711 = ;;711 | |
10 | eqid 2726 | . . 3 ⊢ ;71 = ;71 | |
11 | eqid 2726 | . . 3 ⊢ ;23 = ;23 | |
12 | 8nn0 12496 | . . 3 ⊢ 8 ∈ ℕ0 | |
13 | eqid 2726 | . . . 4 ⊢ ;;235 = ;;235 | |
14 | 3 | nn0cni 12485 | . . . . 5 ⊢ ;23 ∈ ℂ |
15 | 2cn 12288 | . . . . 5 ⊢ 2 ∈ ℂ | |
16 | 3p2e5 12364 | . . . . . 6 ⊢ (3 + 2) = 5 | |
17 | 1, 2, 1, 11, 16 | decaddi 12738 | . . . . 5 ⊢ (;23 + 2) = ;25 |
18 | 14, 15, 17 | addcomli 11407 | . . . 4 ⊢ (2 + ;23) = ;25 |
19 | 0nn0 12488 | . . . 4 ⊢ 0 ∈ ℕ0 | |
20 | 4nn0 12492 | . . . 4 ⊢ 4 ∈ ℕ0 | |
21 | 6nn0 12494 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
22 | 7, 21 | deccl 12693 | . . . . 5 ⊢ ;16 ∈ ℕ0 |
23 | 1, 20 | nn0addcli 12510 | . . . . 5 ⊢ (2 + 4) ∈ ℕ0 |
24 | 7cn 12307 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
25 | 7t2e14 12787 | . . . . . . . 8 ⊢ (7 · 2) = ;14 | |
26 | 24, 15, 25 | mulcomli 11224 | . . . . . . 7 ⊢ (2 · 7) = ;14 |
27 | 4p2e6 12366 | . . . . . . 7 ⊢ (4 + 2) = 6 | |
28 | 7, 20, 1, 26, 27 | decaddi 12738 | . . . . . 6 ⊢ ((2 · 7) + 2) = ;16 |
29 | 3cn 12294 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
30 | 7t3e21 12788 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
31 | 24, 29, 30 | mulcomli 11224 | . . . . . 6 ⊢ (3 · 7) = ;21 |
32 | 6, 1, 2, 11, 7, 1, 28, 31 | decmul1c 12743 | . . . . 5 ⊢ (;23 · 7) = ;;161 |
33 | 4cn 12298 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
34 | 15, 33 | addcli 11221 | . . . . . 6 ⊢ (2 + 4) ∈ ℂ |
35 | ax-1cn 11167 | . . . . . 6 ⊢ 1 ∈ ℂ | |
36 | 33, 15, 27 | addcomli 11407 | . . . . . . . 8 ⊢ (2 + 4) = 6 |
37 | 36 | oveq1i 7414 | . . . . . . 7 ⊢ ((2 + 4) + 1) = (6 + 1) |
38 | 6p1e7 12361 | . . . . . . 7 ⊢ (6 + 1) = 7 | |
39 | 37, 38 | eqtri 2754 | . . . . . 6 ⊢ ((2 + 4) + 1) = 7 |
40 | 34, 35, 39 | addcomli 11407 | . . . . 5 ⊢ (1 + (2 + 4)) = 7 |
41 | 22, 7, 23, 32, 40 | decaddi 12738 | . . . 4 ⊢ ((;23 · 7) + (2 + 4)) = ;;167 |
42 | 5cn 12301 | . . . . . 6 ⊢ 5 ∈ ℂ | |
43 | 7t5e35 12790 | . . . . . 6 ⊢ (7 · 5) = ;35 | |
44 | 24, 42, 43 | mulcomli 11224 | . . . . 5 ⊢ (5 · 7) = ;35 |
45 | 3p1e4 12358 | . . . . 5 ⊢ (3 + 1) = 4 | |
46 | 5p5e10 12749 | . . . . 5 ⊢ (5 + 5) = ;10 | |
47 | 2, 4, 4, 44, 45, 46 | decaddci2 12740 | . . . 4 ⊢ ((5 · 7) + 5) = ;40 |
48 | 3, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47 | decmac 12730 | . . 3 ⊢ ((;;235 · 7) + (2 + ;23)) = ;;;1670 |
49 | 5 | nn0cni 12485 | . . . . 5 ⊢ ;;235 ∈ ℂ |
50 | 49 | mulridi 11219 | . . . 4 ⊢ (;;235 · 1) = ;;235 |
51 | 5p3e8 12370 | . . . 4 ⊢ (5 + 3) = 8 | |
52 | 3, 4, 2, 50, 51 | decaddi 12738 | . . 3 ⊢ ((;;235 · 1) + 3) = ;;238 |
53 | 6, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52 | decma2c 12731 | . 2 ⊢ ((;;235 · ;71) + ;23) = ;;;;16708 |
54 | 5, 8, 7, 9, 4, 3, 53, 50 | decmul2c 12744 | 1 ⊢ (;;235 · ;;711) = ;;;;;167085 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7404 0cc0 11109 1c1 11110 + caddc 11112 · cmul 11114 2c2 12268 3c3 12269 4c4 12270 5c5 12271 6c6 12272 7c7 12273 8c8 12274 ;cdc 12678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-ltxr 11254 df-sub 11447 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-dec 12679 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |