| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 235t711 | Structured version Visualization version GIF version | ||
| Description: Calculate a product by
long multiplication as a base comparison with other
multiplication algorithms.
Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 11124 saving the lower level uses of mulcomli 11124 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12700 are added then this proof would benefit more than ex-decpmul 42289. For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12258 or 8t7e56 12711. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 235t711 | ⊢ (;;235 · ;;711) = ;;;;;167085 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 12401 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 2 | 3nn0 12402 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12606 | . . 3 ⊢ ;23 ∈ ℕ0 |
| 4 | 5nn0 12404 | . . 3 ⊢ 5 ∈ ℕ0 | |
| 5 | 3, 4 | deccl 12606 | . 2 ⊢ ;;235 ∈ ℕ0 |
| 6 | 7nn0 12406 | . . 3 ⊢ 7 ∈ ℕ0 | |
| 7 | 1nn0 12400 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 8 | 6, 7 | deccl 12606 | . 2 ⊢ ;71 ∈ ℕ0 |
| 9 | eqid 2729 | . 2 ⊢ ;;711 = ;;711 | |
| 10 | eqid 2729 | . . 3 ⊢ ;71 = ;71 | |
| 11 | eqid 2729 | . . 3 ⊢ ;23 = ;23 | |
| 12 | 8nn0 12407 | . . 3 ⊢ 8 ∈ ℕ0 | |
| 13 | eqid 2729 | . . . 4 ⊢ ;;235 = ;;235 | |
| 14 | 3 | nn0cni 12396 | . . . . 5 ⊢ ;23 ∈ ℂ |
| 15 | 2cn 12203 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 16 | 3p2e5 12274 | . . . . . 6 ⊢ (3 + 2) = 5 | |
| 17 | 1, 2, 1, 11, 16 | decaddi 12651 | . . . . 5 ⊢ (;23 + 2) = ;25 |
| 18 | 14, 15, 17 | addcomli 11308 | . . . 4 ⊢ (2 + ;23) = ;25 |
| 19 | 0nn0 12399 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 20 | 4nn0 12403 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 21 | 6nn0 12405 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
| 22 | 7, 21 | deccl 12606 | . . . . 5 ⊢ ;16 ∈ ℕ0 |
| 23 | 1, 20 | nn0addcli 12421 | . . . . 5 ⊢ (2 + 4) ∈ ℕ0 |
| 24 | 7cn 12222 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
| 25 | 7t2e14 12700 | . . . . . . . 8 ⊢ (7 · 2) = ;14 | |
| 26 | 24, 15, 25 | mulcomli 11124 | . . . . . . 7 ⊢ (2 · 7) = ;14 |
| 27 | 4p2e6 12276 | . . . . . . 7 ⊢ (4 + 2) = 6 | |
| 28 | 7, 20, 1, 26, 27 | decaddi 12651 | . . . . . 6 ⊢ ((2 · 7) + 2) = ;16 |
| 29 | 3cn 12209 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 30 | 7t3e21 12701 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
| 31 | 24, 29, 30 | mulcomli 11124 | . . . . . 6 ⊢ (3 · 7) = ;21 |
| 32 | 6, 1, 2, 11, 7, 1, 28, 31 | decmul1c 12656 | . . . . 5 ⊢ (;23 · 7) = ;;161 |
| 33 | 4cn 12213 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
| 34 | 15, 33 | addcli 11121 | . . . . . 6 ⊢ (2 + 4) ∈ ℂ |
| 35 | ax-1cn 11067 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 36 | 33, 15, 27 | addcomli 11308 | . . . . . . . 8 ⊢ (2 + 4) = 6 |
| 37 | 36 | oveq1i 7359 | . . . . . . 7 ⊢ ((2 + 4) + 1) = (6 + 1) |
| 38 | 6p1e7 12271 | . . . . . . 7 ⊢ (6 + 1) = 7 | |
| 39 | 37, 38 | eqtri 2752 | . . . . . 6 ⊢ ((2 + 4) + 1) = 7 |
| 40 | 34, 35, 39 | addcomli 11308 | . . . . 5 ⊢ (1 + (2 + 4)) = 7 |
| 41 | 22, 7, 23, 32, 40 | decaddi 12651 | . . . 4 ⊢ ((;23 · 7) + (2 + 4)) = ;;167 |
| 42 | 5cn 12216 | . . . . . 6 ⊢ 5 ∈ ℂ | |
| 43 | 7t5e35 12703 | . . . . . 6 ⊢ (7 · 5) = ;35 | |
| 44 | 24, 42, 43 | mulcomli 11124 | . . . . 5 ⊢ (5 · 7) = ;35 |
| 45 | 3p1e4 12268 | . . . . 5 ⊢ (3 + 1) = 4 | |
| 46 | 5p5e10 12662 | . . . . 5 ⊢ (5 + 5) = ;10 | |
| 47 | 2, 4, 4, 44, 45, 46 | decaddci2 12653 | . . . 4 ⊢ ((5 · 7) + 5) = ;40 |
| 48 | 3, 4, 1, 4, 13, 18, 6, 19, 20, 41, 47 | decmac 12643 | . . 3 ⊢ ((;;235 · 7) + (2 + ;23)) = ;;;1670 |
| 49 | 5 | nn0cni 12396 | . . . . 5 ⊢ ;;235 ∈ ℂ |
| 50 | 49 | mulridi 11119 | . . . 4 ⊢ (;;235 · 1) = ;;235 |
| 51 | 5p3e8 12280 | . . . 4 ⊢ (5 + 3) = 8 | |
| 52 | 3, 4, 2, 50, 51 | decaddi 12651 | . . 3 ⊢ ((;;235 · 1) + 3) = ;;238 |
| 53 | 6, 7, 1, 2, 10, 11, 5, 12, 3, 48, 52 | decma2c 12644 | . 2 ⊢ ((;;235 · ;71) + ;23) = ;;;;16708 |
| 54 | 5, 8, 7, 9, 4, 3, 53, 50 | decmul2c 12657 | 1 ⊢ (;;235 · ;;711) = ;;;;;167085 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 2c2 12183 3c3 12184 4c4 12185 5c5 12186 6c6 12187 7c7 12188 8c8 12189 ;cdc 12591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-dec 12592 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |