Proof of Theorem 2exp16
Step | Hyp | Ref
| Expression |
1 | | 2nn0 12300 |
. 2
⊢ 2 ∈
ℕ0 |
2 | | 8nn0 12306 |
. 2
⊢ 8 ∈
ℕ0 |
3 | | 8cn 12120 |
. . 3
⊢ 8 ∈
ℂ |
4 | | 2cn 12098 |
. . 3
⊢ 2 ∈
ℂ |
5 | | 8t2e16 12602 |
. . 3
⊢ (8
· 2) = ;16 |
6 | 3, 4, 5 | mulcomli 11034 |
. 2
⊢ (2
· 8) = ;16 |
7 | | 2exp8 16839 |
. 2
⊢
(2↑8) = ;;256 |
8 | | 5nn0 12303 |
. . . . 5
⊢ 5 ∈
ℕ0 |
9 | 1, 8 | deccl 12502 |
. . . 4
⊢ ;25 ∈
ℕ0 |
10 | | 6nn0 12304 |
. . . 4
⊢ 6 ∈
ℕ0 |
11 | 9, 10 | deccl 12502 |
. . 3
⊢ ;;256 ∈ ℕ0 |
12 | | eqid 2736 |
. . 3
⊢ ;;256 = ;;256 |
13 | | 1nn0 12299 |
. . . . 5
⊢ 1 ∈
ℕ0 |
14 | 13, 8 | deccl 12502 |
. . . 4
⊢ ;15 ∈
ℕ0 |
15 | | 3nn0 12301 |
. . . 4
⊢ 3 ∈
ℕ0 |
16 | 14, 15 | deccl 12502 |
. . 3
⊢ ;;153 ∈ ℕ0 |
17 | | eqid 2736 |
. . . 4
⊢ ;25 = ;25 |
18 | | eqid 2736 |
. . . 4
⊢ ;;153 = ;;153 |
19 | 13, 1 | deccl 12502 |
. . . . 5
⊢ ;12 ∈
ℕ0 |
20 | 19, 2 | deccl 12502 |
. . . 4
⊢ ;;128 ∈ ℕ0 |
21 | | 4nn0 12302 |
. . . . . 6
⊢ 4 ∈
ℕ0 |
22 | 13, 21 | deccl 12502 |
. . . . 5
⊢ ;14 ∈
ℕ0 |
23 | | eqid 2736 |
. . . . . 6
⊢ ;15 = ;15 |
24 | | eqid 2736 |
. . . . . 6
⊢ ;;128 = ;;128 |
25 | | 0nn0 12298 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
26 | 13 | dec0h 12509 |
. . . . . . . 8
⊢ 1 = ;01 |
27 | | eqid 2736 |
. . . . . . . 8
⊢ ;12 = ;12 |
28 | | 0p1e1 12145 |
. . . . . . . 8
⊢ (0 + 1) =
1 |
29 | | 1p2e3 12166 |
. . . . . . . 8
⊢ (1 + 2) =
3 |
30 | 25, 13, 13, 1, 26, 27, 28, 29 | decadd 12541 |
. . . . . . 7
⊢ (1 +
;12) = ;13 |
31 | | 3p1e4 12168 |
. . . . . . 7
⊢ (3 + 1) =
4 |
32 | 13, 15, 13, 30, 31 | decaddi 12547 |
. . . . . 6
⊢ ((1 +
;12) + 1) = ;14 |
33 | | 5cn 12111 |
. . . . . . 7
⊢ 5 ∈
ℂ |
34 | | 8p5e13 12570 |
. . . . . . 7
⊢ (8 + 5) =
;13 |
35 | 3, 33, 34 | addcomli 11217 |
. . . . . 6
⊢ (5 + 8) =
;13 |
36 | 13, 8, 19, 2, 23, 24, 32, 15, 35 | decaddc 12542 |
. . . . 5
⊢ (;15 + ;;128) =
;;143 |
37 | | eqid 2736 |
. . . . . . 7
⊢ ;14 = ;14 |
38 | | 4p1e5 12169 |
. . . . . . 7
⊢ (4 + 1) =
5 |
39 | 13, 21, 13, 37, 38 | decaddi 12547 |
. . . . . 6
⊢ (;14 + 1) = ;15 |
40 | | 2t2e4 12187 |
. . . . . . . 8
⊢ (2
· 2) = 4 |
41 | | 1p1e2 12148 |
. . . . . . . 8
⊢ (1 + 1) =
2 |
42 | 40, 41 | oveq12i 7319 |
. . . . . . 7
⊢ ((2
· 2) + (1 + 1)) = (4 + 2) |
43 | | 4p2e6 12176 |
. . . . . . 7
⊢ (4 + 2) =
6 |
44 | 42, 43 | eqtri 2764 |
. . . . . 6
⊢ ((2
· 2) + (1 + 1)) = 6 |
45 | | 5t2e10 12587 |
. . . . . . 7
⊢ (5
· 2) = ;10 |
46 | 33 | addid2i 11213 |
. . . . . . 7
⊢ (0 + 5) =
5 |
47 | 13, 25, 8, 45, 46 | decaddi 12547 |
. . . . . 6
⊢ ((5
· 2) + 5) = ;15 |
48 | 1, 8, 13, 8, 17, 39, 1, 8, 13, 44, 47 | decmac 12539 |
. . . . 5
⊢ ((;25 · 2) + (;14 + 1)) = ;65 |
49 | | 6t2e12 12591 |
. . . . . 6
⊢ (6
· 2) = ;12 |
50 | | 3cn 12104 |
. . . . . . 7
⊢ 3 ∈
ℂ |
51 | | 3p2e5 12174 |
. . . . . . 7
⊢ (3 + 2) =
5 |
52 | 50, 4, 51 | addcomli 11217 |
. . . . . 6
⊢ (2 + 3) =
5 |
53 | 13, 1, 15, 49, 52 | decaddi 12547 |
. . . . 5
⊢ ((6
· 2) + 3) = ;15 |
54 | 9, 10, 22, 15, 12, 36, 1, 8, 13, 48, 53 | decmac 12539 |
. . . 4
⊢ ((;;256 · 2) + (;15 + ;;128))
= ;;655 |
55 | 15 | dec0h 12509 |
. . . . 5
⊢ 3 = ;03 |
56 | 50 | addid2i 11213 |
. . . . . . 7
⊢ (0 + 3) =
3 |
57 | 56, 55 | eqtri 2764 |
. . . . . 6
⊢ (0 + 3) =
;03 |
58 | 4 | addid2i 11213 |
. . . . . . . 8
⊢ (0 + 2) =
2 |
59 | 58 | oveq2i 7318 |
. . . . . . 7
⊢ ((2
· 5) + (0 + 2)) = ((2 · 5) + 2) |
60 | 33, 4, 45 | mulcomli 11034 |
. . . . . . . 8
⊢ (2
· 5) = ;10 |
61 | 13, 25, 1, 60, 58 | decaddi 12547 |
. . . . . . 7
⊢ ((2
· 5) + 2) = ;12 |
62 | 59, 61 | eqtri 2764 |
. . . . . 6
⊢ ((2
· 5) + (0 + 2)) = ;12 |
63 | | 5t5e25 12590 |
. . . . . . 7
⊢ (5
· 5) = ;25 |
64 | | 5p3e8 12180 |
. . . . . . 7
⊢ (5 + 3) =
8 |
65 | 1, 8, 15, 63, 64 | decaddi 12547 |
. . . . . 6
⊢ ((5
· 5) + 3) = ;28 |
66 | 1, 8, 25, 15, 17, 57, 8, 2, 1,
62, 65 | decmac 12539 |
. . . . 5
⊢ ((;25 · 5) + (0 + 3)) = ;;128 |
67 | | 6t5e30 12594 |
. . . . . 6
⊢ (6
· 5) = ;30 |
68 | 15, 25, 15, 67, 56 | decaddi 12547 |
. . . . 5
⊢ ((6
· 5) + 3) = ;33 |
69 | 9, 10, 25, 15, 12, 55, 8, 15, 15, 66, 68 | decmac 12539 |
. . . 4
⊢ ((;;256 · 5) + 3) = ;;;1283 |
70 | 1, 8, 14, 15, 17, 18, 11, 15, 20, 54, 69 | decma2c 12540 |
. . 3
⊢ ((;;256 · ;25) + ;;153) =
;;;6553 |
71 | | 6cn 12114 |
. . . . . . 7
⊢ 6 ∈
ℂ |
72 | 71, 4, 49 | mulcomli 11034 |
. . . . . 6
⊢ (2
· 6) = ;12 |
73 | 13, 1, 15, 72, 52 | decaddi 12547 |
. . . . 5
⊢ ((2
· 6) + 3) = ;15 |
74 | 71, 33, 67 | mulcomli 11034 |
. . . . . 6
⊢ (5
· 6) = ;30 |
75 | 15, 25, 15, 74, 56 | decaddi 12547 |
. . . . 5
⊢ ((5
· 6) + 3) = ;33 |
76 | 1, 8, 15, 17, 10, 15, 15, 73, 75 | decrmac 12545 |
. . . 4
⊢ ((;25 · 6) + 3) = ;;153 |
77 | | 6t6e36 12595 |
. . . 4
⊢ (6
· 6) = ;36 |
78 | 10, 9, 10, 12, 10, 15, 76, 77 | decmul1c 12552 |
. . 3
⊢ (;;256 · 6) = ;;;1536 |
79 | 11, 9, 10, 12, 10, 16, 70, 78 | decmul2c 12553 |
. 2
⊢ (;;256 · ;;256) =
;;;;65536 |
80 | 1, 2, 6, 7, 79 | numexp2x 16829 |
1
⊢
(2↑;16) = ;;;;65536 |