Proof of Theorem lgsdir2lem1
Step | Hyp | Ref
| Expression |
1 | | 1re 10906 |
. . . 4
⊢ 1 ∈
ℝ |
2 | | 8re 11999 |
. . . . 5
⊢ 8 ∈
ℝ |
3 | | 8pos 12015 |
. . . . 5
⊢ 0 <
8 |
4 | 2, 3 | elrpii 12662 |
. . . 4
⊢ 8 ∈
ℝ+ |
5 | | 0le1 11428 |
. . . 4
⊢ 0 ≤
1 |
6 | | 1lt8 12101 |
. . . 4
⊢ 1 <
8 |
7 | | modid 13544 |
. . . 4
⊢ (((1
∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 <
8)) → (1 mod 8) = 1) |
8 | 1, 4, 5, 6, 7 | mp4an 689 |
. . 3
⊢ (1 mod 8)
= 1 |
9 | | 8cn 12000 |
. . . . . . . 8
⊢ 8 ∈
ℂ |
10 | 9 | mulid2i 10911 |
. . . . . . 7
⊢ (1
· 8) = 8 |
11 | 10 | oveq2i 7266 |
. . . . . 6
⊢ (-1 + (1
· 8)) = (-1 + 8) |
12 | | ax-1cn 10860 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
13 | 12 | negcli 11219 |
. . . . . . 7
⊢ -1 ∈
ℂ |
14 | 9, 12 | negsubi 11229 |
. . . . . . . 8
⊢ (8 + -1)
= (8 − 1) |
15 | | 8m1e7 12036 |
. . . . . . . 8
⊢ (8
− 1) = 7 |
16 | 14, 15 | eqtri 2766 |
. . . . . . 7
⊢ (8 + -1)
= 7 |
17 | 9, 13, 16 | addcomli 11097 |
. . . . . 6
⊢ (-1 + 8)
= 7 |
18 | 11, 17 | eqtri 2766 |
. . . . 5
⊢ (-1 + (1
· 8)) = 7 |
19 | 18 | oveq1i 7265 |
. . . 4
⊢ ((-1 + (1
· 8)) mod 8) = (7 mod 8) |
20 | 1 | renegcli 11212 |
. . . . 5
⊢ -1 ∈
ℝ |
21 | | 1z 12280 |
. . . . 5
⊢ 1 ∈
ℤ |
22 | | modcyc 13554 |
. . . . 5
⊢ ((-1
∈ ℝ ∧ 8 ∈ ℝ+ ∧ 1 ∈ ℤ)
→ ((-1 + (1 · 8)) mod 8) = (-1 mod 8)) |
23 | 20, 4, 21, 22 | mp3an 1459 |
. . . 4
⊢ ((-1 + (1
· 8)) mod 8) = (-1 mod 8) |
24 | | 7re 11996 |
. . . . 5
⊢ 7 ∈
ℝ |
25 | | 0re 10908 |
. . . . . 6
⊢ 0 ∈
ℝ |
26 | | 7pos 12014 |
. . . . . 6
⊢ 0 <
7 |
27 | 25, 24, 26 | ltleii 11028 |
. . . . 5
⊢ 0 ≤
7 |
28 | | 7lt8 12095 |
. . . . 5
⊢ 7 <
8 |
29 | | modid 13544 |
. . . . 5
⊢ (((7
∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 7 ∧ 7 <
8)) → (7 mod 8) = 7) |
30 | 24, 4, 27, 28, 29 | mp4an 689 |
. . . 4
⊢ (7 mod 8)
= 7 |
31 | 19, 23, 30 | 3eqtr3i 2774 |
. . 3
⊢ (-1 mod
8) = 7 |
32 | 8, 31 | pm3.2i 470 |
. 2
⊢ ((1 mod
8) = 1 ∧ (-1 mod 8) = 7) |
33 | | 3re 11983 |
. . . 4
⊢ 3 ∈
ℝ |
34 | | 3pos 12008 |
. . . . 5
⊢ 0 <
3 |
35 | 25, 33, 34 | ltleii 11028 |
. . . 4
⊢ 0 ≤
3 |
36 | | 3lt8 12099 |
. . . 4
⊢ 3 <
8 |
37 | | modid 13544 |
. . . 4
⊢ (((3
∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 3 ∧ 3 <
8)) → (3 mod 8) = 3) |
38 | 33, 4, 35, 36, 37 | mp4an 689 |
. . 3
⊢ (3 mod 8)
= 3 |
39 | 10 | oveq2i 7266 |
. . . . . 6
⊢ (-3 + (1
· 8)) = (-3 + 8) |
40 | | 3cn 11984 |
. . . . . . . 8
⊢ 3 ∈
ℂ |
41 | 40 | negcli 11219 |
. . . . . . 7
⊢ -3 ∈
ℂ |
42 | 9, 40 | negsubi 11229 |
. . . . . . . 8
⊢ (8 + -3)
= (8 − 3) |
43 | | 5cn 11991 |
. . . . . . . . 9
⊢ 5 ∈
ℂ |
44 | | 5p3e8 12060 |
. . . . . . . . . 10
⊢ (5 + 3) =
8 |
45 | 43, 40, 44 | addcomli 11097 |
. . . . . . . . 9
⊢ (3 + 5) =
8 |
46 | 9, 40, 43, 45 | subaddrii 11240 |
. . . . . . . 8
⊢ (8
− 3) = 5 |
47 | 42, 46 | eqtri 2766 |
. . . . . . 7
⊢ (8 + -3)
= 5 |
48 | 9, 41, 47 | addcomli 11097 |
. . . . . 6
⊢ (-3 + 8)
= 5 |
49 | 39, 48 | eqtri 2766 |
. . . . 5
⊢ (-3 + (1
· 8)) = 5 |
50 | 49 | oveq1i 7265 |
. . . 4
⊢ ((-3 + (1
· 8)) mod 8) = (5 mod 8) |
51 | 33 | renegcli 11212 |
. . . . 5
⊢ -3 ∈
ℝ |
52 | | modcyc 13554 |
. . . . 5
⊢ ((-3
∈ ℝ ∧ 8 ∈ ℝ+ ∧ 1 ∈ ℤ)
→ ((-3 + (1 · 8)) mod 8) = (-3 mod 8)) |
53 | 51, 4, 21, 52 | mp3an 1459 |
. . . 4
⊢ ((-3 + (1
· 8)) mod 8) = (-3 mod 8) |
54 | | 5re 11990 |
. . . . 5
⊢ 5 ∈
ℝ |
55 | | 5pos 12012 |
. . . . . 6
⊢ 0 <
5 |
56 | 25, 54, 55 | ltleii 11028 |
. . . . 5
⊢ 0 ≤
5 |
57 | | 5lt8 12097 |
. . . . 5
⊢ 5 <
8 |
58 | | modid 13544 |
. . . . 5
⊢ (((5
∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 5 ∧ 5 <
8)) → (5 mod 8) = 5) |
59 | 54, 4, 56, 57, 58 | mp4an 689 |
. . . 4
⊢ (5 mod 8)
= 5 |
60 | 50, 53, 59 | 3eqtr3i 2774 |
. . 3
⊢ (-3 mod
8) = 5 |
61 | 38, 60 | pm3.2i 470 |
. 2
⊢ ((3 mod
8) = 3 ∧ (-3 mod 8) = 5) |
62 | 32, 61 | pm3.2i 470 |
1
⊢ (((1 mod
8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) =
5)) |