![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > basndxelwund | Structured version Visualization version GIF version |
Description: The index of the base set is an element in a weak universe containing the natural numbers. Formerly part of proof for 1strwun 17197. (Contributed by AV, 27-Mar-2020.) (Revised by AV, 17-Oct-2024.) |
Ref | Expression |
---|---|
basndxelwund.u | β’ (π β π β WUni) |
basndxelwund.o | β’ (π β Ο β π) |
Ref | Expression |
---|---|
basndxelwund | β’ (π β (Baseβndx) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 17180 | . 2 β’ Base = Slot (Baseβndx) | |
2 | basndxelwund.u | . 2 β’ (π β π β WUni) | |
3 | basndxelwund.o | . . 3 β’ (π β Ο β π) | |
4 | 2, 3 | wunndx 17161 | . 2 β’ (π β ndx β π) |
5 | 1, 2, 4 | wunstr 17154 | 1 β’ (π β (Baseβndx) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 βcfv 6542 Οcom 7867 WUnicwun 10721 ndxcnx 17159 Basecbs 17177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-inf2 9662 ax-cnex 11192 ax-1cn 11194 ax-addcl 11196 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-oadd 8487 df-omul 8488 df-er 8721 df-ec 8723 df-qs 8727 df-map 8843 df-pm 8844 df-wun 10723 df-ni 10893 df-pli 10894 df-mi 10895 df-lti 10896 df-plpq 10929 df-mpq 10930 df-ltpq 10931 df-enq 10932 df-nq 10933 df-erq 10934 df-plq 10935 df-mq 10936 df-1nq 10937 df-rq 10938 df-ltnq 10939 df-np 11002 df-plp 11004 df-ltp 11006 df-enr 11076 df-nr 11077 df-c 11142 df-nn 12241 df-slot 17148 df-ndx 17160 df-base 17178 |
This theorem is referenced by: 1strwun 17197 wunress 17228 |
Copyright terms: Public domain | W3C validator |