MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basndxelwund Structured version   Visualization version   GIF version

Theorem basndxelwund 17258
Description: The index of the base set is an element in a weak universe containing the natural numbers. Formerly part of proof for 1strwun 17266. (Contributed by AV, 27-Mar-2020.) (Revised by AV, 17-Oct-2024.)
Hypotheses
Ref Expression
basndxelwund.u (𝜑𝑈 ∈ WUni)
basndxelwund.o (𝜑 → ω ∈ 𝑈)
Assertion
Ref Expression
basndxelwund (𝜑 → (Base‘ndx) ∈ 𝑈)

Proof of Theorem basndxelwund
StepHypRef Expression
1 baseid 17250 . 2 Base = Slot (Base‘ndx)
2 basndxelwund.u . 2 (𝜑𝑈 ∈ WUni)
3 basndxelwund.o . . 3 (𝜑 → ω ∈ 𝑈)
42, 3wunndx 17232 . 2 (𝜑 → ndx ∈ 𝑈)
51, 2, 4wunstr 17225 1 (𝜑 → (Base‘ndx) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6561  ωcom 7887  WUnicwun 10740  ndxcnx 17230  Basecbs 17247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-1cn 11213  ax-addcl 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-pm 8869  df-wun 10742  df-ni 10912  df-pli 10913  df-mi 10914  df-lti 10915  df-plpq 10948  df-mpq 10949  df-ltpq 10950  df-enq 10951  df-nq 10952  df-erq 10953  df-plq 10954  df-mq 10955  df-1nq 10956  df-rq 10957  df-ltnq 10958  df-np 11021  df-plp 11023  df-ltp 11025  df-enr 11095  df-nr 11096  df-c 11161  df-nn 12267  df-slot 17219  df-ndx 17231  df-base 17248
This theorem is referenced by:  1strwun  17266  wunress  17295
  Copyright terms: Public domain W3C validator