MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basndxelwund Structured version   Visualization version   GIF version

Theorem basndxelwund 17197
Description: The index of the base set is an element in a weak universe containing the natural numbers. Formerly part of proof for 1strwun 17203. (Contributed by AV, 27-Mar-2020.) (Revised by AV, 17-Oct-2024.)
Hypotheses
Ref Expression
basndxelwund.u (𝜑𝑈 ∈ WUni)
basndxelwund.o (𝜑 → ω ∈ 𝑈)
Assertion
Ref Expression
basndxelwund (𝜑 → (Base‘ndx) ∈ 𝑈)

Proof of Theorem basndxelwund
StepHypRef Expression
1 baseid 17189 . 2 Base = Slot (Base‘ndx)
2 basndxelwund.u . 2 (𝜑𝑈 ∈ WUni)
3 basndxelwund.o . . 3 (𝜑 → ω ∈ 𝑈)
42, 3wunndx 17172 . 2 (𝜑 → ndx ∈ 𝑈)
51, 2, 4wunstr 17165 1 (𝜑 → (Base‘ndx) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6514  ωcom 7845  WUnicwun 10660  ndxcnx 17170  Basecbs 17186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-wun 10662  df-ni 10832  df-pli 10833  df-mi 10834  df-lti 10835  df-plpq 10868  df-mpq 10869  df-ltpq 10870  df-enq 10871  df-nq 10872  df-erq 10873  df-plq 10874  df-mq 10875  df-1nq 10876  df-rq 10877  df-ltnq 10878  df-np 10941  df-plp 10943  df-ltp 10945  df-enr 11015  df-nr 11016  df-c 11081  df-nn 12194  df-slot 17159  df-ndx 17171  df-base 17187
This theorem is referenced by:  1strwun  17203  wunress  17226
  Copyright terms: Public domain W3C validator