MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basndxelwund Structured version   Visualization version   GIF version

Theorem basndxelwund 17244
Description: The index of the base set is an element in a weak universe containing the natural numbers. Formerly part of proof for 1strwun 17252. (Contributed by AV, 27-Mar-2020.) (Revised by AV, 17-Oct-2024.)
Hypotheses
Ref Expression
basndxelwund.u (𝜑𝑈 ∈ WUni)
basndxelwund.o (𝜑 → ω ∈ 𝑈)
Assertion
Ref Expression
basndxelwund (𝜑 → (Base‘ndx) ∈ 𝑈)

Proof of Theorem basndxelwund
StepHypRef Expression
1 baseid 17236 . 2 Base = Slot (Base‘ndx)
2 basndxelwund.u . 2 (𝜑𝑈 ∈ WUni)
3 basndxelwund.o . . 3 (𝜑 → ω ∈ 𝑈)
42, 3wunndx 17219 . 2 (𝜑 → ndx ∈ 𝑈)
51, 2, 4wunstr 17212 1 (𝜑 → (Base‘ndx) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6536  ωcom 7866  WUnicwun 10719  ndxcnx 17217  Basecbs 17233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-pm 8848  df-wun 10721  df-ni 10891  df-pli 10892  df-mi 10893  df-lti 10894  df-plpq 10927  df-mpq 10928  df-ltpq 10929  df-enq 10930  df-nq 10931  df-erq 10932  df-plq 10933  df-mq 10934  df-1nq 10935  df-rq 10936  df-ltnq 10937  df-np 11000  df-plp 11002  df-ltp 11004  df-enr 11074  df-nr 11075  df-c 11140  df-nn 12246  df-slot 17206  df-ndx 17218  df-base 17234
This theorem is referenced by:  1strwun  17252  wunress  17275
  Copyright terms: Public domain W3C validator