| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > basndxelwund | Structured version Visualization version GIF version | ||
| Description: The index of the base set is an element in a weak universe containing the natural numbers. Formerly part of proof for 1strwun 17134. (Contributed by AV, 27-Mar-2020.) (Revised by AV, 17-Oct-2024.) |
| Ref | Expression |
|---|---|
| basndxelwund.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| basndxelwund.o | ⊢ (𝜑 → ω ∈ 𝑈) |
| Ref | Expression |
|---|---|
| basndxelwund | ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseid 17120 | . 2 ⊢ Base = Slot (Base‘ndx) | |
| 2 | basndxelwund.u | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 3 | basndxelwund.o | . . 3 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 4 | 2, 3 | wunndx 17103 | . 2 ⊢ (𝜑 → ndx ∈ 𝑈) |
| 5 | 1, 2, 4 | wunstr 17096 | 1 ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6481 ωcom 7796 WUnicwun 10588 ndxcnx 17101 Basecbs 17117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-pm 8753 df-wun 10590 df-ni 10760 df-pli 10761 df-mi 10762 df-lti 10763 df-plpq 10796 df-mpq 10797 df-ltpq 10798 df-enq 10799 df-nq 10800 df-erq 10801 df-plq 10802 df-mq 10803 df-1nq 10804 df-rq 10805 df-ltnq 10806 df-np 10869 df-plp 10871 df-ltp 10873 df-enr 10943 df-nr 10944 df-c 11009 df-nn 12123 df-slot 17090 df-ndx 17102 df-base 17118 |
| This theorem is referenced by: 1strwun 17134 wunress 17157 |
| Copyright terms: Public domain | W3C validator |