MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basndxelwund Structured version   Visualization version   GIF version

Theorem basndxelwund 17190
Description: The index of the base set is an element in a weak universe containing the natural numbers. Formerly part of proof for 1strwun 17196. (Contributed by AV, 27-Mar-2020.) (Revised by AV, 17-Oct-2024.)
Hypotheses
Ref Expression
basndxelwund.u (𝜑𝑈 ∈ WUni)
basndxelwund.o (𝜑 → ω ∈ 𝑈)
Assertion
Ref Expression
basndxelwund (𝜑 → (Base‘ndx) ∈ 𝑈)

Proof of Theorem basndxelwund
StepHypRef Expression
1 baseid 17182 . 2 Base = Slot (Base‘ndx)
2 basndxelwund.u . 2 (𝜑𝑈 ∈ WUni)
3 basndxelwund.o . . 3 (𝜑 → ω ∈ 𝑈)
42, 3wunndx 17165 . 2 (𝜑 → ndx ∈ 𝑈)
51, 2, 4wunstr 17158 1 (𝜑 → (Base‘ndx) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6511  ωcom 7842  WUnicwun 10653  ndxcnx 17163  Basecbs 17179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-wun 10655  df-ni 10825  df-pli 10826  df-mi 10827  df-lti 10828  df-plpq 10861  df-mpq 10862  df-ltpq 10863  df-enq 10864  df-nq 10865  df-erq 10866  df-plq 10867  df-mq 10868  df-1nq 10869  df-rq 10870  df-ltnq 10871  df-np 10934  df-plp 10936  df-ltp 10938  df-enr 11008  df-nr 11009  df-c 11074  df-nn 12187  df-slot 17152  df-ndx 17164  df-base 17180
This theorem is referenced by:  1strwun  17196  wunress  17219
  Copyright terms: Public domain W3C validator