Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bndmet Structured version   Visualization version   GIF version

Theorem bndmet 37821
Description: A bounded metric space is a metric space. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
bndmet (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))

Proof of Theorem bndmet
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbnd 37820 . 2 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑦 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑦)))
21simplbi 497 1 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cfv 6476  (class class class)co 7341  +crp 12885  Metcmet 21272  ballcbl 21273  Bndcbnd 37807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-bnd 37819
This theorem is referenced by:  isbnd3  37824  equivbnd  37830  bnd2lem  37831  equivbnd2  37832  prdsbnd  37833  prdsbnd2  37835
  Copyright terms: Public domain W3C validator