Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bndmet Structured version   Visualization version   GIF version

Theorem bndmet 37770
Description: A bounded metric space is a metric space. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
bndmet (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))

Proof of Theorem bndmet
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbnd 37769 . 2 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑦 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑦)))
21simplbi 497 1 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cfv 6513  (class class class)co 7389  +crp 12957  Metcmet 21256  ballcbl 21257  Bndcbnd 37756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-bnd 37768
This theorem is referenced by:  isbnd3  37773  equivbnd  37779  bnd2lem  37780  equivbnd2  37781  prdsbnd  37782  prdsbnd2  37784
  Copyright terms: Public domain W3C validator