Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bndmet Structured version   Visualization version   GIF version

Theorem bndmet 35866
Description: A bounded metric space is a metric space. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
bndmet (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))

Proof of Theorem bndmet
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbnd 35865 . 2 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥𝑋𝑦 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑦)))
21simplbi 497 1 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cfv 6418  (class class class)co 7255  +crp 12659  Metcmet 20496  ballcbl 20497  Bndcbnd 35852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-bnd 35864
This theorem is referenced by:  isbnd3  35869  equivbnd  35875  bnd2lem  35876  equivbnd2  35877  prdsbnd  35878  prdsbnd2  35880
  Copyright terms: Public domain W3C validator