Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prdsbnd Structured version   Visualization version   GIF version

Theorem prdsbnd 37800
Description: The product metric over finite index set is bounded if all the factors are bounded. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
prdsbnd.y 𝑌 = (𝑆Xs𝑅)
prdsbnd.b 𝐵 = (Base‘𝑌)
prdsbnd.v 𝑉 = (Base‘(𝑅𝑥))
prdsbnd.e 𝐸 = ((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉))
prdsbnd.d 𝐷 = (dist‘𝑌)
prdsbnd.s (𝜑𝑆𝑊)
prdsbnd.i (𝜑𝐼 ∈ Fin)
prdsbnd.r (𝜑𝑅 Fn 𝐼)
prdsbnd.m ((𝜑𝑥𝐼) → 𝐸 ∈ (Bnd‘𝑉))
Assertion
Ref Expression
prdsbnd (𝜑𝐷 ∈ (Bnd‘𝐵))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐵   𝜑,𝑥   𝑥,𝐼   𝑥,𝑆   𝑥,𝑌
Allowed substitution hints:   𝐷(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem prdsbnd
Dummy variables 𝑧 𝑓 𝑔 𝑘 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))) = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))
2 eqid 2737 . . . 4 (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
3 prdsbnd.v . . . 4 𝑉 = (Base‘(𝑅𝑥))
4 prdsbnd.e . . . 4 𝐸 = ((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉))
5 eqid 2737 . . . 4 (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
6 prdsbnd.s . . . 4 (𝜑𝑆𝑊)
7 prdsbnd.i . . . 4 (𝜑𝐼 ∈ Fin)
8 fvexd 6921 . . . 4 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ V)
9 prdsbnd.m . . . . 5 ((𝜑𝑥𝐼) → 𝐸 ∈ (Bnd‘𝑉))
10 bndmet 37788 . . . . 5 (𝐸 ∈ (Bnd‘𝑉) → 𝐸 ∈ (Met‘𝑉))
119, 10syl 17 . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
121, 2, 3, 4, 5, 6, 7, 8, 11prdsmet 24380 . . 3 (𝜑 → (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) ∈ (Met‘(Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))))
13 prdsbnd.d . . . 4 𝐷 = (dist‘𝑌)
14 prdsbnd.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
15 prdsbnd.r . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
16 dffn5 6967 . . . . . . . 8 (𝑅 Fn 𝐼𝑅 = (𝑥𝐼 ↦ (𝑅𝑥)))
1715, 16sylib 218 . . . . . . 7 (𝜑𝑅 = (𝑥𝐼 ↦ (𝑅𝑥)))
1817oveq2d 7447 . . . . . 6 (𝜑 → (𝑆Xs𝑅) = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
1914, 18eqtrid 2789 . . . . 5 (𝜑𝑌 = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
2019fveq2d 6910 . . . 4 (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2113, 20eqtrid 2789 . . 3 (𝜑𝐷 = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
22 prdsbnd.b . . . . 5 𝐵 = (Base‘𝑌)
2319fveq2d 6910 . . . . 5 (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2422, 23eqtrid 2789 . . . 4 (𝜑𝐵 = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2524fveq2d 6910 . . 3 (𝜑 → (Met‘𝐵) = (Met‘(Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))))
2612, 21, 253eltr4d 2856 . 2 (𝜑𝐷 ∈ (Met‘𝐵))
27 isbnd3 37791 . . . . . . 7 (𝐸 ∈ (Bnd‘𝑉) ↔ (𝐸 ∈ (Met‘𝑉) ∧ ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤)))
2827simprbi 496 . . . . . 6 (𝐸 ∈ (Bnd‘𝑉) → ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤))
299, 28syl 17 . . . . 5 ((𝜑𝑥𝐼) → ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤))
3029ralrimiva 3146 . . . 4 (𝜑 → ∀𝑥𝐼𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤))
31 oveq2 7439 . . . . . 6 (𝑤 = (𝑘𝑥) → (0[,]𝑤) = (0[,](𝑘𝑥)))
3231feq3d 6723 . . . . 5 (𝑤 = (𝑘𝑥) → (𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤) ↔ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥))))
3332ac6sfi 9320 . . . 4 ((𝐼 ∈ Fin ∧ ∀𝑥𝐼𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤)) → ∃𝑘(𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥))))
347, 30, 33syl2anc 584 . . 3 (𝜑 → ∃𝑘(𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥))))
35 frn 6743 . . . . . . . 8 (𝑘:𝐼⟶ℝ → ran 𝑘 ⊆ ℝ)
3635adantl 481 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → ran 𝑘 ⊆ ℝ)
37 0red 11264 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
3837snssd 4809 . . . . . . . 8 (𝜑 → {0} ⊆ ℝ)
3938adantr 480 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → {0} ⊆ ℝ)
4036, 39unssd 4192 . . . . . 6 ((𝜑𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
41 ffn 6736 . . . . . . . . . 10 (𝑘:𝐼⟶ℝ → 𝑘 Fn 𝐼)
42 dffn4 6826 . . . . . . . . . 10 (𝑘 Fn 𝐼𝑘:𝐼onto→ran 𝑘)
4341, 42sylib 218 . . . . . . . . 9 (𝑘:𝐼⟶ℝ → 𝑘:𝐼onto→ran 𝑘)
44 fofi 9351 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑘:𝐼onto→ran 𝑘) → ran 𝑘 ∈ Fin)
457, 43, 44syl2an 596 . . . . . . . 8 ((𝜑𝑘:𝐼⟶ℝ) → ran 𝑘 ∈ Fin)
46 snfi 9083 . . . . . . . 8 {0} ∈ Fin
47 unfi 9211 . . . . . . . 8 ((ran 𝑘 ∈ Fin ∧ {0} ∈ Fin) → (ran 𝑘 ∪ {0}) ∈ Fin)
4845, 46, 47sylancl 586 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ∈ Fin)
49 ssun2 4179 . . . . . . . . 9 {0} ⊆ (ran 𝑘 ∪ {0})
50 c0ex 11255 . . . . . . . . . 10 0 ∈ V
5150snid 4662 . . . . . . . . 9 0 ∈ {0}
5249, 51sselii 3980 . . . . . . . 8 0 ∈ (ran 𝑘 ∪ {0})
53 ne0i 4341 . . . . . . . 8 (0 ∈ (ran 𝑘 ∪ {0}) → (ran 𝑘 ∪ {0}) ≠ ∅)
5452, 53mp1i 13 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ≠ ∅)
55 ltso 11341 . . . . . . . 8 < Or ℝ
56 fisupcl 9509 . . . . . . . 8 (( < Or ℝ ∧ ((ran 𝑘 ∪ {0}) ∈ Fin ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ (ran 𝑘 ∪ {0}) ⊆ ℝ)) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ (ran 𝑘 ∪ {0}))
5755, 56mpan 690 . . . . . . 7 (((ran 𝑘 ∪ {0}) ∈ Fin ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ (ran 𝑘 ∪ {0}) ⊆ ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ (ran 𝑘 ∪ {0}))
5848, 54, 40, 57syl3anc 1373 . . . . . 6 ((𝜑𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ (ran 𝑘 ∪ {0}))
5940, 58sseldd 3984 . . . . 5 ((𝜑𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
6059adantrr 717 . . . 4 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
61 metf 24340 . . . . . . 7 (𝐷 ∈ (Met‘𝐵) → 𝐷:(𝐵 × 𝐵)⟶ℝ)
62 ffn 6736 . . . . . . 7 (𝐷:(𝐵 × 𝐵)⟶ℝ → 𝐷 Fn (𝐵 × 𝐵))
6326, 61, 623syl 18 . . . . . 6 (𝜑𝐷 Fn (𝐵 × 𝐵))
6463adantr 480 . . . . 5 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐷 Fn (𝐵 × 𝐵))
6526ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐷 ∈ (Met‘𝐵))
66 simprl 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
6766adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑓𝐵)
68 simprr 773 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
6968adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑔𝐵)
70 metcl 24342 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝐵) ∧ 𝑓𝐵𝑔𝐵) → (𝑓𝐷𝑔) ∈ ℝ)
7165, 67, 69, 70syl3anc 1373 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) ∈ ℝ)
72 metge0 24355 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝐵) ∧ 𝑓𝐵𝑔𝐵) → 0 ≤ (𝑓𝐷𝑔))
7365, 67, 69, 72syl3anc 1373 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 0 ≤ (𝑓𝐷𝑔))
7421oveqdr 7459 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = (𝑓(dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))𝑔))
756adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑊)
767adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼 ∈ Fin)
77 fvexd 6921 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑅𝑥) ∈ V)
7877ralrimiva 3146 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑅𝑥) ∈ V)
7924adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
8066, 79eleqtrd 2843 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
8168, 79eleqtrd 2843 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
821, 2, 75, 76, 78, 80, 81, 3, 4, 5prdsdsval3 17530 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
8374, 82eqtrd 2777 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
8483adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
8511adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
861, 2, 75, 76, 78, 3, 80prdsbascl 17528 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
8786r19.21bi 3251 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ 𝑉)
881, 2, 75, 76, 78, 3, 81prdsbascl 17528 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
8988r19.21bi 3251 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝑉)
90 metcl 24342 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ (Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
9185, 87, 89, 90syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
9291ad2ant2r 747 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
93 ffvelcdm 7101 . . . . . . . . . . . . . . . . 17 ((𝑘:𝐼⟶ℝ ∧ 𝑥𝐼) → (𝑘𝑥) ∈ ℝ)
9493ad2ant2lr 748 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ∈ ℝ)
9559adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
9695adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
97 simprr 773 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))
9887ad2ant2r 747 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝑥) ∈ 𝑉)
9989ad2ant2r 747 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑔𝑥) ∈ 𝑉)
10097, 98, 99fovcdmd 7605 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ (0[,](𝑘𝑥)))
101 0re 11263 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
102 elicc2 13452 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ (𝑘𝑥) ∈ ℝ) → (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ (0[,](𝑘𝑥)) ↔ (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)) ∧ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥))))
103101, 94, 102sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ (0[,](𝑘𝑥)) ↔ (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)) ∧ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥))))
104100, 103mpbid 232 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)) ∧ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥)))
105104simp3d 1145 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥))
10640adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
107106adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
10852, 53mp1i 13 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ≠ ∅)
109 fimaxre2 12213 . . . . . . . . . . . . . . . . . . . 20 (((ran 𝑘 ∪ {0}) ⊆ ℝ ∧ (ran 𝑘 ∪ {0}) ∈ Fin) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
11040, 48, 109syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘:𝐼⟶ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
111110adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
112111adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
113 ssun1 4178 . . . . . . . . . . . . . . . . . 18 ran 𝑘 ⊆ (ran 𝑘 ∪ {0})
11441ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑘 Fn 𝐼)
115 simprl 771 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑥𝐼)
116 fnfvelrn 7100 . . . . . . . . . . . . . . . . . . 19 ((𝑘 Fn 𝐼𝑥𝐼) → (𝑘𝑥) ∈ ran 𝑘)
117114, 115, 116syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ∈ ran 𝑘)
118113, 117sselid 3981 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ∈ (ran 𝑘 ∪ {0}))
119 suprub 12229 . . . . . . . . . . . . . . . . 17 ((((ran 𝑘 ∪ {0}) ⊆ ℝ ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧) ∧ (𝑘𝑥) ∈ (ran 𝑘 ∪ {0})) → (𝑘𝑥) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
120107, 108, 112, 118, 119syl31anc 1375 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
12192, 94, 96, 105, 120letrd 11418 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
122121expr 456 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ 𝑥𝐼) → (𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
123122ralimdva 3167 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → (∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
124123impr 454 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
125 ovex 7464 . . . . . . . . . . . . . 14 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V
126125rgenw 3065 . . . . . . . . . . . . 13 𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V
127 eqid 2737 . . . . . . . . . . . . . 14 (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))
128 breq1 5146 . . . . . . . . . . . . . 14 (𝑤 = ((𝑓𝑥)𝐸(𝑔𝑥)) → (𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
129127, 128ralrnmptw 7114 . . . . . . . . . . . . 13 (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V → (∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
130126, 129ax-mp 5 . . . . . . . . . . . 12 (∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
131124, 130sylibr 234 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
13240ad2ant2r 747 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
13352, 53mp1i 13 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ≠ ∅)
134110ad2ant2r 747 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
13552a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 0 ∈ (ran 𝑘 ∪ {0}))
136 suprub 12229 . . . . . . . . . . . . . 14 ((((ran 𝑘 ∪ {0}) ⊆ ℝ ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧) ∧ 0 ∈ (ran 𝑘 ∪ {0})) → 0 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
137132, 133, 134, 135, 136syl31anc 1375 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 0 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
138 elsni 4643 . . . . . . . . . . . . . 14 (𝑤 ∈ {0} → 𝑤 = 0)
139138breq1d 5153 . . . . . . . . . . . . 13 (𝑤 ∈ {0} → (𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ 0 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
140137, 139syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑤 ∈ {0} → 𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
141140ralrimiv 3145 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑤 ∈ {0}𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
142 ralunb 4197 . . . . . . . . . . 11 (∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ (∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ∧ ∀𝑤 ∈ {0}𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
143131, 141, 142sylanbrc 583 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
14491fmpttd 7135 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ)
145144frnd 6744 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ⊆ ℝ)
146 0red 11264 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ∈ ℝ)
147146snssd 4809 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → {0} ⊆ ℝ)
148145, 147unssd 4192 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ)
149 ressxr 11305 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
150148, 149sstrdi 3996 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
151150adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
15260adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
153152rexrd 11311 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ*)
154 supxrleub 13368 . . . . . . . . . . 11 (((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ* ∧ sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ*) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
155151, 153, 154syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
156143, 155mpbird 257 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
15784, 156eqbrtrd 5165 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
158 elicc2 13452 . . . . . . . . 9 ((0 ∈ ℝ ∧ sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ) → ((𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ ((𝑓𝐷𝑔) ∈ ℝ ∧ 0 ≤ (𝑓𝐷𝑔) ∧ (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))))
159101, 152, 158sylancr 587 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ ((𝑓𝐷𝑔) ∈ ℝ ∧ 0 ≤ (𝑓𝐷𝑔) ∧ (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))))
16071, 73, 157, 159mpbir3and 1343 . . . . . . 7 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
161160an32s 652 . . . . . 6 (((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
162161ralrimivva 3202 . . . . 5 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
163 ffnov 7559 . . . . 5 (𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < ))))
16464, 162, 163sylanbrc 583 . . . 4 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
165 oveq2 7439 . . . . . 6 (𝑚 = sup((ran 𝑘 ∪ {0}), ℝ, < ) → (0[,]𝑚) = (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
166165feq3d 6723 . . . . 5 (𝑚 = sup((ran 𝑘 ∪ {0}), ℝ, < ) → (𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚) ↔ 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < ))))
167166rspcev 3622 . . . 4 ((sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ ∧ 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < ))) → ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚))
16860, 164, 167syl2anc 584 . . 3 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚))
16934, 168exlimddv 1935 . 2 (𝜑 → ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚))
170 isbnd3 37791 . 2 (𝐷 ∈ (Bnd‘𝐵) ↔ (𝐷 ∈ (Met‘𝐵) ∧ ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚)))
17126, 169, 170sylanbrc 583 1 (𝜑𝐷 ∈ (Bnd‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  cun 3949  wss 3951  c0 4333  {csn 4626   class class class wbr 5143  cmpt 5225   Or wor 5591   × cxp 5683  ran crn 5686  cres 5687   Fn wfn 6556  wf 6557  ontowfo 6559  cfv 6561  (class class class)co 7431  Fincfn 8985  supcsup 9480  cr 11154  0cc0 11155  *cxr 11294   < clt 11295  cle 11296  [,]cicc 13390  Basecbs 17247  distcds 17306  Xscprds 17490  Metcmet 21350  Bndcbnd 37774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-prds 17492  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-bnd 37786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator