Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prdsbnd Structured version   Visualization version   GIF version

Theorem prdsbnd 36252
Description: The product metric over finite index set is bounded if all the factors are bounded. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
prdsbnd.y 𝑌 = (𝑆Xs𝑅)
prdsbnd.b 𝐵 = (Base‘𝑌)
prdsbnd.v 𝑉 = (Base‘(𝑅𝑥))
prdsbnd.e 𝐸 = ((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉))
prdsbnd.d 𝐷 = (dist‘𝑌)
prdsbnd.s (𝜑𝑆𝑊)
prdsbnd.i (𝜑𝐼 ∈ Fin)
prdsbnd.r (𝜑𝑅 Fn 𝐼)
prdsbnd.m ((𝜑𝑥𝐼) → 𝐸 ∈ (Bnd‘𝑉))
Assertion
Ref Expression
prdsbnd (𝜑𝐷 ∈ (Bnd‘𝐵))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐵   𝜑,𝑥   𝑥,𝐼   𝑥,𝑆   𝑥,𝑌
Allowed substitution hints:   𝐷(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem prdsbnd
Dummy variables 𝑧 𝑓 𝑔 𝑘 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))) = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))
2 eqid 2736 . . . 4 (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
3 prdsbnd.v . . . 4 𝑉 = (Base‘(𝑅𝑥))
4 prdsbnd.e . . . 4 𝐸 = ((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉))
5 eqid 2736 . . . 4 (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
6 prdsbnd.s . . . 4 (𝜑𝑆𝑊)
7 prdsbnd.i . . . 4 (𝜑𝐼 ∈ Fin)
8 fvexd 6857 . . . 4 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ V)
9 prdsbnd.m . . . . 5 ((𝜑𝑥𝐼) → 𝐸 ∈ (Bnd‘𝑉))
10 bndmet 36240 . . . . 5 (𝐸 ∈ (Bnd‘𝑉) → 𝐸 ∈ (Met‘𝑉))
119, 10syl 17 . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
121, 2, 3, 4, 5, 6, 7, 8, 11prdsmet 23723 . . 3 (𝜑 → (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) ∈ (Met‘(Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))))
13 prdsbnd.d . . . 4 𝐷 = (dist‘𝑌)
14 prdsbnd.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
15 prdsbnd.r . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
16 dffn5 6901 . . . . . . . 8 (𝑅 Fn 𝐼𝑅 = (𝑥𝐼 ↦ (𝑅𝑥)))
1715, 16sylib 217 . . . . . . 7 (𝜑𝑅 = (𝑥𝐼 ↦ (𝑅𝑥)))
1817oveq2d 7373 . . . . . 6 (𝜑 → (𝑆Xs𝑅) = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
1914, 18eqtrid 2788 . . . . 5 (𝜑𝑌 = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
2019fveq2d 6846 . . . 4 (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2113, 20eqtrid 2788 . . 3 (𝜑𝐷 = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
22 prdsbnd.b . . . . 5 𝐵 = (Base‘𝑌)
2319fveq2d 6846 . . . . 5 (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2422, 23eqtrid 2788 . . . 4 (𝜑𝐵 = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2524fveq2d 6846 . . 3 (𝜑 → (Met‘𝐵) = (Met‘(Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))))
2612, 21, 253eltr4d 2853 . 2 (𝜑𝐷 ∈ (Met‘𝐵))
27 isbnd3 36243 . . . . . . 7 (𝐸 ∈ (Bnd‘𝑉) ↔ (𝐸 ∈ (Met‘𝑉) ∧ ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤)))
2827simprbi 497 . . . . . 6 (𝐸 ∈ (Bnd‘𝑉) → ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤))
299, 28syl 17 . . . . 5 ((𝜑𝑥𝐼) → ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤))
3029ralrimiva 3143 . . . 4 (𝜑 → ∀𝑥𝐼𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤))
31 oveq2 7365 . . . . . 6 (𝑤 = (𝑘𝑥) → (0[,]𝑤) = (0[,](𝑘𝑥)))
3231feq3d 6655 . . . . 5 (𝑤 = (𝑘𝑥) → (𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤) ↔ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥))))
3332ac6sfi 9231 . . . 4 ((𝐼 ∈ Fin ∧ ∀𝑥𝐼𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤)) → ∃𝑘(𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥))))
347, 30, 33syl2anc 584 . . 3 (𝜑 → ∃𝑘(𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥))))
35 frn 6675 . . . . . . . 8 (𝑘:𝐼⟶ℝ → ran 𝑘 ⊆ ℝ)
3635adantl 482 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → ran 𝑘 ⊆ ℝ)
37 0red 11158 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
3837snssd 4769 . . . . . . . 8 (𝜑 → {0} ⊆ ℝ)
3938adantr 481 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → {0} ⊆ ℝ)
4036, 39unssd 4146 . . . . . 6 ((𝜑𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
41 ffn 6668 . . . . . . . . . 10 (𝑘:𝐼⟶ℝ → 𝑘 Fn 𝐼)
42 dffn4 6762 . . . . . . . . . 10 (𝑘 Fn 𝐼𝑘:𝐼onto→ran 𝑘)
4341, 42sylib 217 . . . . . . . . 9 (𝑘:𝐼⟶ℝ → 𝑘:𝐼onto→ran 𝑘)
44 fofi 9282 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑘:𝐼onto→ran 𝑘) → ran 𝑘 ∈ Fin)
457, 43, 44syl2an 596 . . . . . . . 8 ((𝜑𝑘:𝐼⟶ℝ) → ran 𝑘 ∈ Fin)
46 snfi 8988 . . . . . . . 8 {0} ∈ Fin
47 unfi 9116 . . . . . . . 8 ((ran 𝑘 ∈ Fin ∧ {0} ∈ Fin) → (ran 𝑘 ∪ {0}) ∈ Fin)
4845, 46, 47sylancl 586 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ∈ Fin)
49 ssun2 4133 . . . . . . . . 9 {0} ⊆ (ran 𝑘 ∪ {0})
50 c0ex 11149 . . . . . . . . . 10 0 ∈ V
5150snid 4622 . . . . . . . . 9 0 ∈ {0}
5249, 51sselii 3941 . . . . . . . 8 0 ∈ (ran 𝑘 ∪ {0})
53 ne0i 4294 . . . . . . . 8 (0 ∈ (ran 𝑘 ∪ {0}) → (ran 𝑘 ∪ {0}) ≠ ∅)
5452, 53mp1i 13 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ≠ ∅)
55 ltso 11235 . . . . . . . 8 < Or ℝ
56 fisupcl 9405 . . . . . . . 8 (( < Or ℝ ∧ ((ran 𝑘 ∪ {0}) ∈ Fin ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ (ran 𝑘 ∪ {0}) ⊆ ℝ)) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ (ran 𝑘 ∪ {0}))
5755, 56mpan 688 . . . . . . 7 (((ran 𝑘 ∪ {0}) ∈ Fin ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ (ran 𝑘 ∪ {0}) ⊆ ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ (ran 𝑘 ∪ {0}))
5848, 54, 40, 57syl3anc 1371 . . . . . 6 ((𝜑𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ (ran 𝑘 ∪ {0}))
5940, 58sseldd 3945 . . . . 5 ((𝜑𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
6059adantrr 715 . . . 4 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
61 metf 23683 . . . . . . 7 (𝐷 ∈ (Met‘𝐵) → 𝐷:(𝐵 × 𝐵)⟶ℝ)
62 ffn 6668 . . . . . . 7 (𝐷:(𝐵 × 𝐵)⟶ℝ → 𝐷 Fn (𝐵 × 𝐵))
6326, 61, 623syl 18 . . . . . 6 (𝜑𝐷 Fn (𝐵 × 𝐵))
6463adantr 481 . . . . 5 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐷 Fn (𝐵 × 𝐵))
6526ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐷 ∈ (Met‘𝐵))
66 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
6766adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑓𝐵)
68 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
6968adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑔𝐵)
70 metcl 23685 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝐵) ∧ 𝑓𝐵𝑔𝐵) → (𝑓𝐷𝑔) ∈ ℝ)
7165, 67, 69, 70syl3anc 1371 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) ∈ ℝ)
72 metge0 23698 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝐵) ∧ 𝑓𝐵𝑔𝐵) → 0 ≤ (𝑓𝐷𝑔))
7365, 67, 69, 72syl3anc 1371 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 0 ≤ (𝑓𝐷𝑔))
7421oveqdr 7385 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = (𝑓(dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))𝑔))
756adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑊)
767adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼 ∈ Fin)
77 fvexd 6857 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑅𝑥) ∈ V)
7877ralrimiva 3143 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑅𝑥) ∈ V)
7924adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
8066, 79eleqtrd 2840 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
8168, 79eleqtrd 2840 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
821, 2, 75, 76, 78, 80, 81, 3, 4, 5prdsdsval3 17367 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
8374, 82eqtrd 2776 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
8483adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
8511adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
861, 2, 75, 76, 78, 3, 80prdsbascl 17365 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
8786r19.21bi 3234 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ 𝑉)
881, 2, 75, 76, 78, 3, 81prdsbascl 17365 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
8988r19.21bi 3234 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝑉)
90 metcl 23685 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ (Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
9185, 87, 89, 90syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
9291ad2ant2r 745 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
93 ffvelcdm 7032 . . . . . . . . . . . . . . . . 17 ((𝑘:𝐼⟶ℝ ∧ 𝑥𝐼) → (𝑘𝑥) ∈ ℝ)
9493ad2ant2lr 746 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ∈ ℝ)
9559adantlr 713 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
9695adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
97 simprr 771 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))
9887ad2ant2r 745 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝑥) ∈ 𝑉)
9989ad2ant2r 745 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑔𝑥) ∈ 𝑉)
10097, 98, 99fovcdmd 7526 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ (0[,](𝑘𝑥)))
101 0re 11157 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
102 elicc2 13329 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ (𝑘𝑥) ∈ ℝ) → (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ (0[,](𝑘𝑥)) ↔ (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)) ∧ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥))))
103101, 94, 102sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ (0[,](𝑘𝑥)) ↔ (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)) ∧ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥))))
104100, 103mpbid 231 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)) ∧ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥)))
105104simp3d 1144 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥))
10640adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
107106adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
10852, 53mp1i 13 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ≠ ∅)
109 fimaxre2 12100 . . . . . . . . . . . . . . . . . . . 20 (((ran 𝑘 ∪ {0}) ⊆ ℝ ∧ (ran 𝑘 ∪ {0}) ∈ Fin) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
11040, 48, 109syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘:𝐼⟶ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
111110adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
112111adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
113 ssun1 4132 . . . . . . . . . . . . . . . . . 18 ran 𝑘 ⊆ (ran 𝑘 ∪ {0})
11441ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑘 Fn 𝐼)
115 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑥𝐼)
116 fnfvelrn 7031 . . . . . . . . . . . . . . . . . . 19 ((𝑘 Fn 𝐼𝑥𝐼) → (𝑘𝑥) ∈ ran 𝑘)
117114, 115, 116syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ∈ ran 𝑘)
118113, 117sselid 3942 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ∈ (ran 𝑘 ∪ {0}))
119 suprub 12116 . . . . . . . . . . . . . . . . 17 ((((ran 𝑘 ∪ {0}) ⊆ ℝ ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧) ∧ (𝑘𝑥) ∈ (ran 𝑘 ∪ {0})) → (𝑘𝑥) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
120107, 108, 112, 118, 119syl31anc 1373 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
12192, 94, 96, 105, 120letrd 11312 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
122121expr 457 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ 𝑥𝐼) → (𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
123122ralimdva 3164 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → (∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
124123impr 455 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
125 ovex 7390 . . . . . . . . . . . . . 14 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V
126125rgenw 3068 . . . . . . . . . . . . 13 𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V
127 eqid 2736 . . . . . . . . . . . . . 14 (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))
128 breq1 5108 . . . . . . . . . . . . . 14 (𝑤 = ((𝑓𝑥)𝐸(𝑔𝑥)) → (𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
129127, 128ralrnmptw 7044 . . . . . . . . . . . . 13 (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V → (∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
130126, 129ax-mp 5 . . . . . . . . . . . 12 (∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
131124, 130sylibr 233 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
13240ad2ant2r 745 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
13352, 53mp1i 13 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ≠ ∅)
134110ad2ant2r 745 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
13552a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 0 ∈ (ran 𝑘 ∪ {0}))
136 suprub 12116 . . . . . . . . . . . . . 14 ((((ran 𝑘 ∪ {0}) ⊆ ℝ ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧) ∧ 0 ∈ (ran 𝑘 ∪ {0})) → 0 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
137132, 133, 134, 135, 136syl31anc 1373 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 0 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
138 elsni 4603 . . . . . . . . . . . . . 14 (𝑤 ∈ {0} → 𝑤 = 0)
139138breq1d 5115 . . . . . . . . . . . . 13 (𝑤 ∈ {0} → (𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ 0 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
140137, 139syl5ibrcom 246 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑤 ∈ {0} → 𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
141140ralrimiv 3142 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑤 ∈ {0}𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
142 ralunb 4151 . . . . . . . . . . 11 (∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ (∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ∧ ∀𝑤 ∈ {0}𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
143131, 141, 142sylanbrc 583 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
14491fmpttd 7063 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ)
145144frnd 6676 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ⊆ ℝ)
146 0red 11158 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ∈ ℝ)
147146snssd 4769 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → {0} ⊆ ℝ)
148145, 147unssd 4146 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ)
149 ressxr 11199 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
150148, 149sstrdi 3956 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
151150adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
15260adantlr 713 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
153152rexrd 11205 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ*)
154 supxrleub 13245 . . . . . . . . . . 11 (((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ* ∧ sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ*) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
155151, 153, 154syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
156143, 155mpbird 256 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
15784, 156eqbrtrd 5127 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
158 elicc2 13329 . . . . . . . . 9 ((0 ∈ ℝ ∧ sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ) → ((𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ ((𝑓𝐷𝑔) ∈ ℝ ∧ 0 ≤ (𝑓𝐷𝑔) ∧ (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))))
159101, 152, 158sylancr 587 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ ((𝑓𝐷𝑔) ∈ ℝ ∧ 0 ≤ (𝑓𝐷𝑔) ∧ (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))))
16071, 73, 157, 159mpbir3and 1342 . . . . . . 7 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
161160an32s 650 . . . . . 6 (((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
162161ralrimivva 3197 . . . . 5 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
163 ffnov 7483 . . . . 5 (𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < ))))
16464, 162, 163sylanbrc 583 . . . 4 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
165 oveq2 7365 . . . . . 6 (𝑚 = sup((ran 𝑘 ∪ {0}), ℝ, < ) → (0[,]𝑚) = (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
166165feq3d 6655 . . . . 5 (𝑚 = sup((ran 𝑘 ∪ {0}), ℝ, < ) → (𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚) ↔ 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < ))))
167166rspcev 3581 . . . 4 ((sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ ∧ 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < ))) → ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚))
16860, 164, 167syl2anc 584 . . 3 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚))
16934, 168exlimddv 1938 . 2 (𝜑 → ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚))
170 isbnd3 36243 . 2 (𝐷 ∈ (Bnd‘𝐵) ↔ (𝐷 ∈ (Met‘𝐵) ∧ ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚)))
17126, 169, 170sylanbrc 583 1 (𝜑𝐷 ∈ (Bnd‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cun 3908  wss 3910  c0 4282  {csn 4586   class class class wbr 5105  cmpt 5188   Or wor 5544   × cxp 5631  ran crn 5634  cres 5635   Fn wfn 6491  wf 6492  ontowfo 6494  cfv 6496  (class class class)co 7357  Fincfn 8883  supcsup 9376  cr 11050  0cc0 11051  *cxr 11188   < clt 11189  cle 11190  [,]cicc 13267  Basecbs 17083  distcds 17142  Xscprds 17327  Metcmet 20782  Bndcbnd 36226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-ec 8650  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-prds 17329  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-bnd 36238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator