Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . 4
⊢ (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))) = (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))) |
2 | | eqid 2738 |
. . . 4
⊢
(Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) = (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) |
3 | | prdsbnd.v |
. . . 4
⊢ 𝑉 = (Base‘(𝑅‘𝑥)) |
4 | | prdsbnd.e |
. . . 4
⊢ 𝐸 = ((dist‘(𝑅‘𝑥)) ↾ (𝑉 × 𝑉)) |
5 | | eqid 2738 |
. . . 4
⊢
(dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) = (dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) |
6 | | prdsbnd.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝑊) |
7 | | prdsbnd.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ Fin) |
8 | | fvexd 6771 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ V) |
9 | | prdsbnd.m |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (Bnd‘𝑉)) |
10 | | bndmet 35866 |
. . . . 5
⊢ (𝐸 ∈ (Bnd‘𝑉) → 𝐸 ∈ (Met‘𝑉)) |
11 | 9, 10 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (Met‘𝑉)) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | prdsmet 23431 |
. . 3
⊢ (𝜑 → (dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) ∈ (Met‘(Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))))) |
13 | | prdsbnd.d |
. . . 4
⊢ 𝐷 = (dist‘𝑌) |
14 | | prdsbnd.y |
. . . . . 6
⊢ 𝑌 = (𝑆Xs𝑅) |
15 | | prdsbnd.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Fn 𝐼) |
16 | | dffn5 6810 |
. . . . . . . 8
⊢ (𝑅 Fn 𝐼 ↔ 𝑅 = (𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))) |
17 | 15, 16 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → 𝑅 = (𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))) |
18 | 17 | oveq2d 7271 |
. . . . . 6
⊢ (𝜑 → (𝑆Xs𝑅) = (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) |
19 | 14, 18 | syl5eq 2791 |
. . . . 5
⊢ (𝜑 → 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) |
20 | 19 | fveq2d 6760 |
. . . 4
⊢ (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
21 | 13, 20 | syl5eq 2791 |
. . 3
⊢ (𝜑 → 𝐷 = (dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
22 | | prdsbnd.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑌) |
23 | 19 | fveq2d 6760 |
. . . . 5
⊢ (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
24 | 22, 23 | syl5eq 2791 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
25 | 24 | fveq2d 6760 |
. . 3
⊢ (𝜑 → (Met‘𝐵) =
(Met‘(Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))))) |
26 | 12, 21, 25 | 3eltr4d 2854 |
. 2
⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) |
27 | | isbnd3 35869 |
. . . . . . 7
⊢ (𝐸 ∈ (Bnd‘𝑉) ↔ (𝐸 ∈ (Met‘𝑉) ∧ ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤))) |
28 | 27 | simprbi 496 |
. . . . . 6
⊢ (𝐸 ∈ (Bnd‘𝑉) → ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤)) |
29 | 9, 28 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤)) |
30 | 29 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤)) |
31 | | oveq2 7263 |
. . . . . 6
⊢ (𝑤 = (𝑘‘𝑥) → (0[,]𝑤) = (0[,](𝑘‘𝑥))) |
32 | 31 | feq3d 6571 |
. . . . 5
⊢ (𝑤 = (𝑘‘𝑥) → (𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤) ↔ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) |
33 | 32 | ac6sfi 8988 |
. . . 4
⊢ ((𝐼 ∈ Fin ∧ ∀𝑥 ∈ 𝐼 ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤)) → ∃𝑘(𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) |
34 | 7, 30, 33 | syl2anc 583 |
. . 3
⊢ (𝜑 → ∃𝑘(𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) |
35 | | frn 6591 |
. . . . . . . 8
⊢ (𝑘:𝐼⟶ℝ → ran 𝑘 ⊆
ℝ) |
36 | 35 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘:𝐼⟶ℝ) → ran 𝑘 ⊆
ℝ) |
37 | | 0red 10909 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℝ) |
38 | 37 | snssd 4739 |
. . . . . . . 8
⊢ (𝜑 → {0} ⊆
ℝ) |
39 | 38 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘:𝐼⟶ℝ) → {0} ⊆
ℝ) |
40 | 36, 39 | unssd 4116 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ⊆
ℝ) |
41 | | ffn 6584 |
. . . . . . . . . 10
⊢ (𝑘:𝐼⟶ℝ → 𝑘 Fn 𝐼) |
42 | | dffn4 6678 |
. . . . . . . . . 10
⊢ (𝑘 Fn 𝐼 ↔ 𝑘:𝐼–onto→ran 𝑘) |
43 | 41, 42 | sylib 217 |
. . . . . . . . 9
⊢ (𝑘:𝐼⟶ℝ → 𝑘:𝐼–onto→ran 𝑘) |
44 | | fofi 9035 |
. . . . . . . . 9
⊢ ((𝐼 ∈ Fin ∧ 𝑘:𝐼–onto→ran 𝑘) → ran 𝑘 ∈ Fin) |
45 | 7, 43, 44 | syl2an 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘:𝐼⟶ℝ) → ran 𝑘 ∈ Fin) |
46 | | snfi 8788 |
. . . . . . . 8
⊢ {0}
∈ Fin |
47 | | unfi 8917 |
. . . . . . . 8
⊢ ((ran
𝑘 ∈ Fin ∧ {0}
∈ Fin) → (ran 𝑘
∪ {0}) ∈ Fin) |
48 | 45, 46, 47 | sylancl 585 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ∈
Fin) |
49 | | ssun2 4103 |
. . . . . . . . 9
⊢ {0}
⊆ (ran 𝑘 ∪
{0}) |
50 | | c0ex 10900 |
. . . . . . . . . 10
⊢ 0 ∈
V |
51 | 50 | snid 4594 |
. . . . . . . . 9
⊢ 0 ∈
{0} |
52 | 49, 51 | sselii 3914 |
. . . . . . . 8
⊢ 0 ∈
(ran 𝑘 ∪
{0}) |
53 | | ne0i 4265 |
. . . . . . . 8
⊢ (0 ∈
(ran 𝑘 ∪ {0}) →
(ran 𝑘 ∪ {0}) ≠
∅) |
54 | 52, 53 | mp1i 13 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ≠
∅) |
55 | | ltso 10986 |
. . . . . . . 8
⊢ < Or
ℝ |
56 | | fisupcl 9158 |
. . . . . . . 8
⊢ (( <
Or ℝ ∧ ((ran 𝑘
∪ {0}) ∈ Fin ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ (ran 𝑘 ∪ {0}) ⊆ ℝ))
→ sup((ran 𝑘 ∪
{0}), ℝ, < ) ∈ (ran 𝑘 ∪ {0})) |
57 | 55, 56 | mpan 686 |
. . . . . . 7
⊢ (((ran
𝑘 ∪ {0}) ∈ Fin
∧ (ran 𝑘 ∪ {0})
≠ ∅ ∧ (ran 𝑘
∪ {0}) ⊆ ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ (ran
𝑘 ∪
{0})) |
58 | 48, 54, 40, 57 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < )
∈ (ran 𝑘 ∪
{0})) |
59 | 40, 58 | sseldd 3918 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < )
∈ ℝ) |
60 | 59 | adantrr 713 |
. . . 4
⊢ ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈
ℝ) |
61 | | metf 23391 |
. . . . . . 7
⊢ (𝐷 ∈ (Met‘𝐵) → 𝐷:(𝐵 × 𝐵)⟶ℝ) |
62 | | ffn 6584 |
. . . . . . 7
⊢ (𝐷:(𝐵 × 𝐵)⟶ℝ → 𝐷 Fn (𝐵 × 𝐵)) |
63 | 26, 61, 62 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 𝐷 Fn (𝐵 × 𝐵)) |
64 | 63 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → 𝐷 Fn (𝐵 × 𝐵)) |
65 | 26 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → 𝐷 ∈ (Met‘𝐵)) |
66 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝑓 ∈ 𝐵) |
67 | 66 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → 𝑓 ∈ 𝐵) |
68 | | simprr 769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝑔 ∈ 𝐵) |
69 | 68 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → 𝑔 ∈ 𝐵) |
70 | | metcl 23393 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (Met‘𝐵) ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → (𝑓𝐷𝑔) ∈ ℝ) |
71 | 65, 67, 69, 70 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (𝑓𝐷𝑔) ∈ ℝ) |
72 | | metge0 23406 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (Met‘𝐵) ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → 0 ≤ (𝑓𝐷𝑔)) |
73 | 65, 67, 69, 72 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → 0 ≤ (𝑓𝐷𝑔)) |
74 | 21 | oveqdr 7283 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑓𝐷𝑔) = (𝑓(dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))𝑔)) |
75 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝑆 ∈ 𝑊) |
76 | 7 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝐼 ∈ Fin) |
77 | | fvexd 6771 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ V) |
78 | 77 | ralrimiva 3107 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → ∀𝑥 ∈ 𝐼 (𝑅‘𝑥) ∈ V) |
79 | 24 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝐵 = (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
80 | 66, 79 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝑓 ∈ (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
81 | 68, 79 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 𝑔 ∈ (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
82 | 1, 2, 75, 76, 78, 80, 81, 3, 4, 5 | prdsdsval3 17113 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑓(dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))𝑔) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, <
)) |
83 | 74, 82 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, <
)) |
84 | 83 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (𝑓𝐷𝑔) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, <
)) |
85 | 11 | adantlr 711 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (Met‘𝑉)) |
86 | 1, 2, 75, 76, 78, 3, 80 | prdsbascl 17111 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → ∀𝑥 ∈ 𝐼 (𝑓‘𝑥) ∈ 𝑉) |
87 | 86 | r19.21bi 3132 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) ∈ 𝑉) |
88 | 1, 2, 75, 76, 78, 3, 81 | prdsbascl 17111 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → ∀𝑥 ∈ 𝐼 (𝑔‘𝑥) ∈ 𝑉) |
89 | 88 | r19.21bi 3132 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑔‘𝑥) ∈ 𝑉) |
90 | | metcl 23393 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐸 ∈ (Met‘𝑉) ∧ (𝑓‘𝑥) ∈ 𝑉 ∧ (𝑔‘𝑥) ∈ 𝑉) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ ℝ) |
91 | 85, 87, 89, 90 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ ℝ) |
92 | 91 | ad2ant2r 743 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ ℝ) |
93 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘:𝐼⟶ℝ ∧ 𝑥 ∈ 𝐼) → (𝑘‘𝑥) ∈ ℝ) |
94 | 93 | ad2ant2lr 744 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (𝑘‘𝑥) ∈ ℝ) |
95 | 59 | adantlr 711 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < )
∈ ℝ) |
96 | 95 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈
ℝ) |
97 | | simprr 769 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥))) |
98 | 87 | ad2ant2r 743 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (𝑓‘𝑥) ∈ 𝑉) |
99 | 89 | ad2ant2r 743 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (𝑔‘𝑥) ∈ 𝑉) |
100 | 97, 98, 99 | fovrnd 7422 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ (0[,](𝑘‘𝑥))) |
101 | | 0re 10908 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ |
102 | | elicc2 13073 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℝ ∧ (𝑘‘𝑥) ∈ ℝ) → (((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ (0[,](𝑘‘𝑥)) ↔ (((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∧ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ (𝑘‘𝑥)))) |
103 | 101, 94, 102 | sylancr 586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ (0[,](𝑘‘𝑥)) ↔ (((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∧ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ (𝑘‘𝑥)))) |
104 | 100, 103 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∧ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ (𝑘‘𝑥))) |
105 | 104 | simp3d 1142 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ (𝑘‘𝑥)) |
106 | 40 | adantlr 711 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ⊆
ℝ) |
107 | 106 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (ran 𝑘 ∪ {0}) ⊆ ℝ) |
108 | 52, 53 | mp1i 13 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (ran 𝑘 ∪ {0}) ≠ ∅) |
109 | | fimaxre2 11850 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((ran
𝑘 ∪ {0}) ⊆
ℝ ∧ (ran 𝑘 ∪
{0}) ∈ Fin) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤 ≤ 𝑧) |
110 | 40, 48, 109 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘:𝐼⟶ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤 ≤ 𝑧) |
111 | 110 | adantlr 711 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤 ≤ 𝑧) |
112 | 111 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤 ≤ 𝑧) |
113 | | ssun1 4102 |
. . . . . . . . . . . . . . . . . 18
⊢ ran 𝑘 ⊆ (ran 𝑘 ∪ {0}) |
114 | 41 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → 𝑘 Fn 𝐼) |
115 | | simprl 767 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → 𝑥 ∈ 𝐼) |
116 | | fnfvelrn 6940 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 Fn 𝐼 ∧ 𝑥 ∈ 𝐼) → (𝑘‘𝑥) ∈ ran 𝑘) |
117 | 114, 115,
116 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (𝑘‘𝑥) ∈ ran 𝑘) |
118 | 113, 117 | sselid 3915 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (𝑘‘𝑥) ∈ (ran 𝑘 ∪ {0})) |
119 | | suprub 11866 |
. . . . . . . . . . . . . . . . 17
⊢ ((((ran
𝑘 ∪ {0}) ⊆
ℝ ∧ (ran 𝑘 ∪
{0}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤 ≤ 𝑧) ∧ (𝑘‘𝑥) ∈ (ran 𝑘 ∪ {0})) → (𝑘‘𝑥) ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
)) |
120 | 107, 108,
112, 118, 119 | syl31anc 1371 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (𝑘‘𝑥) ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
)) |
121 | 92, 94, 96, 105, 120 | letrd 11062 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥 ∈ 𝐼 ∧ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
)) |
122 | 121 | expr 456 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ 𝑥 ∈ 𝐼) → (𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)) → ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
))) |
123 | 122 | ralimdva 3102 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ 𝑘:𝐼⟶ℝ) → (∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)) → ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
))) |
124 | 123 | impr 454 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
)) |
125 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ V |
126 | 125 | rgenw 3075 |
. . . . . . . . . . . . 13
⊢
∀𝑥 ∈
𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ V |
127 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) |
128 | | breq1 5073 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) → (𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
))) |
129 | 127, 128 | ralrnmptw 6952 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ∈ V → (∀𝑤 ∈ ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔
∀𝑥 ∈ 𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
))) |
130 | 126, 129 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(∀𝑤 ∈
ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔
∀𝑥 ∈ 𝐼 ((𝑓‘𝑥)𝐸(𝑔‘𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
)) |
131 | 124, 130 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → ∀𝑤 ∈ ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
)) |
132 | 40 | ad2ant2r 743 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (ran 𝑘 ∪ {0}) ⊆ ℝ) |
133 | 52, 53 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (ran 𝑘 ∪ {0}) ≠ ∅) |
134 | 110 | ad2ant2r 743 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤 ≤ 𝑧) |
135 | 52 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → 0 ∈ (ran 𝑘 ∪ {0})) |
136 | | suprub 11866 |
. . . . . . . . . . . . . 14
⊢ ((((ran
𝑘 ∪ {0}) ⊆
ℝ ∧ (ran 𝑘 ∪
{0}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤 ≤ 𝑧) ∧ 0 ∈ (ran 𝑘 ∪ {0})) → 0 ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
)) |
137 | 132, 133,
134, 135, 136 | syl31anc 1371 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → 0 ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
)) |
138 | | elsni 4575 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ {0} → 𝑤 = 0) |
139 | 138 | breq1d 5080 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ {0} → (𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )
↔ 0 ≤ sup((ran 𝑘
∪ {0}), ℝ, < ))) |
140 | 137, 139 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (𝑤 ∈ {0} → 𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
))) |
141 | 140 | ralrimiv 3106 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → ∀𝑤 ∈ {0}𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
)) |
142 | | ralunb 4121 |
. . . . . . . . . . 11
⊢
(∀𝑤 ∈
(ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔
(∀𝑤 ∈ ran
(𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ∧
∀𝑤 ∈ {0}𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
))) |
143 | 131, 141,
142 | sylanbrc 582 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → ∀𝑤 ∈ (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
)) |
144 | 91 | fmpttd 6971 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))):𝐼⟶ℝ) |
145 | 144 | frnd 6592 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ⊆ ℝ) |
146 | | 0red 10909 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → 0 ∈ ℝ) |
147 | 146 | snssd 4739 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → {0} ⊆
ℝ) |
148 | 145, 147 | unssd 4116 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}) ⊆
ℝ) |
149 | | ressxr 10950 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℝ* |
150 | 148, 149 | sstrdi 3929 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}) ⊆
ℝ*) |
151 | 150 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}) ⊆
ℝ*) |
152 | 60 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈
ℝ) |
153 | 152 | rexrd 10956 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈
ℝ*) |
154 | | supxrleub 12989 |
. . . . . . . . . . 11
⊢ (((ran
(𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}) ⊆ ℝ*
∧ sup((ran 𝑘 ∪
{0}), ℝ, < ) ∈ ℝ*) → (sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, < )
≤ sup((ran 𝑘 ∪ {0}),
ℝ, < ) ↔ ∀𝑤 ∈ (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
))) |
155 | 151, 153,
154 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, < )
≤ sup((ran 𝑘 ∪ {0}),
ℝ, < ) ↔ ∀𝑤 ∈ (ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
))) |
156 | 143, 155 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)𝐸(𝑔‘𝑥))) ∪ {0}), ℝ*, < )
≤ sup((ran 𝑘 ∪ {0}),
ℝ, < )) |
157 | 84, 156 | eqbrtrd 5092 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
)) |
158 | | elicc2 13073 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
→ ((𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ ((𝑓𝐷𝑔) ∈ ℝ ∧ 0 ≤ (𝑓𝐷𝑔) ∧ (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
)))) |
159 | 101, 152,
158 | sylancr 586 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → ((𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ ((𝑓𝐷𝑔) ∈ ℝ ∧ 0 ≤ (𝑓𝐷𝑔) ∧ (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, <
)))) |
160 | 71, 73, 157, 159 | mpbir3and 1340 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, <
))) |
161 | 160 | an32s 648 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) ∧ (𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵)) → (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, <
))) |
162 | 161 | ralrimivva 3114 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → ∀𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, <
))) |
163 | | ffnov 7379 |
. . . . 5
⊢ (𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, <
)))) |
164 | 64, 162, 163 | sylanbrc 582 |
. . . 4
⊢ ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, <
))) |
165 | | oveq2 7263 |
. . . . . 6
⊢ (𝑚 = sup((ran 𝑘 ∪ {0}), ℝ, < ) →
(0[,]𝑚) = (0[,]sup((ran
𝑘 ∪ {0}), ℝ, <
))) |
166 | 165 | feq3d 6571 |
. . . . 5
⊢ (𝑚 = sup((ran 𝑘 ∪ {0}), ℝ, < ) → (𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚) ↔ 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, <
)))) |
167 | 166 | rspcev 3552 |
. . . 4
⊢
((sup((ran 𝑘 ∪
{0}), ℝ, < ) ∈ ℝ ∧ 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < ))) →
∃𝑚 ∈ ℝ
𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚)) |
168 | 60, 164, 167 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥 ∈ 𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘‘𝑥)))) → ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚)) |
169 | 34, 168 | exlimddv 1939 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚)) |
170 | | isbnd3 35869 |
. 2
⊢ (𝐷 ∈ (Bnd‘𝐵) ↔ (𝐷 ∈ (Met‘𝐵) ∧ ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚))) |
171 | 26, 169, 170 | sylanbrc 582 |
1
⊢ (𝜑 → 𝐷 ∈ (Bnd‘𝐵)) |