Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prdsbnd Structured version   Visualization version   GIF version

Theorem prdsbnd 35231
Description: The product metric over finite index set is bounded if all the factors are bounded. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
prdsbnd.y 𝑌 = (𝑆Xs𝑅)
prdsbnd.b 𝐵 = (Base‘𝑌)
prdsbnd.v 𝑉 = (Base‘(𝑅𝑥))
prdsbnd.e 𝐸 = ((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉))
prdsbnd.d 𝐷 = (dist‘𝑌)
prdsbnd.s (𝜑𝑆𝑊)
prdsbnd.i (𝜑𝐼 ∈ Fin)
prdsbnd.r (𝜑𝑅 Fn 𝐼)
prdsbnd.m ((𝜑𝑥𝐼) → 𝐸 ∈ (Bnd‘𝑉))
Assertion
Ref Expression
prdsbnd (𝜑𝐷 ∈ (Bnd‘𝐵))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐵   𝜑,𝑥   𝑥,𝐼   𝑥,𝑆   𝑥,𝑌
Allowed substitution hints:   𝐷(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem prdsbnd
Dummy variables 𝑧 𝑓 𝑔 𝑘 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . 4 (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))) = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))
2 eqid 2798 . . . 4 (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
3 prdsbnd.v . . . 4 𝑉 = (Base‘(𝑅𝑥))
4 prdsbnd.e . . . 4 𝐸 = ((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉))
5 eqid 2798 . . . 4 (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
6 prdsbnd.s . . . 4 (𝜑𝑆𝑊)
7 prdsbnd.i . . . 4 (𝜑𝐼 ∈ Fin)
8 fvexd 6660 . . . 4 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ V)
9 prdsbnd.m . . . . 5 ((𝜑𝑥𝐼) → 𝐸 ∈ (Bnd‘𝑉))
10 bndmet 35219 . . . . 5 (𝐸 ∈ (Bnd‘𝑉) → 𝐸 ∈ (Met‘𝑉))
119, 10syl 17 . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
121, 2, 3, 4, 5, 6, 7, 8, 11prdsmet 22977 . . 3 (𝜑 → (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) ∈ (Met‘(Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))))
13 prdsbnd.d . . . 4 𝐷 = (dist‘𝑌)
14 prdsbnd.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
15 prdsbnd.r . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
16 dffn5 6699 . . . . . . . 8 (𝑅 Fn 𝐼𝑅 = (𝑥𝐼 ↦ (𝑅𝑥)))
1715, 16sylib 221 . . . . . . 7 (𝜑𝑅 = (𝑥𝐼 ↦ (𝑅𝑥)))
1817oveq2d 7151 . . . . . 6 (𝜑 → (𝑆Xs𝑅) = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
1914, 18syl5eq 2845 . . . . 5 (𝜑𝑌 = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
2019fveq2d 6649 . . . 4 (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2113, 20syl5eq 2845 . . 3 (𝜑𝐷 = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
22 prdsbnd.b . . . . 5 𝐵 = (Base‘𝑌)
2319fveq2d 6649 . . . . 5 (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2422, 23syl5eq 2845 . . . 4 (𝜑𝐵 = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2524fveq2d 6649 . . 3 (𝜑 → (Met‘𝐵) = (Met‘(Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))))
2612, 21, 253eltr4d 2905 . 2 (𝜑𝐷 ∈ (Met‘𝐵))
27 isbnd3 35222 . . . . . . 7 (𝐸 ∈ (Bnd‘𝑉) ↔ (𝐸 ∈ (Met‘𝑉) ∧ ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤)))
2827simprbi 500 . . . . . 6 (𝐸 ∈ (Bnd‘𝑉) → ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤))
299, 28syl 17 . . . . 5 ((𝜑𝑥𝐼) → ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤))
3029ralrimiva 3149 . . . 4 (𝜑 → ∀𝑥𝐼𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤))
31 oveq2 7143 . . . . . 6 (𝑤 = (𝑘𝑥) → (0[,]𝑤) = (0[,](𝑘𝑥)))
3231feq3d 6474 . . . . 5 (𝑤 = (𝑘𝑥) → (𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤) ↔ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥))))
3332ac6sfi 8746 . . . 4 ((𝐼 ∈ Fin ∧ ∀𝑥𝐼𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤)) → ∃𝑘(𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥))))
347, 30, 33syl2anc 587 . . 3 (𝜑 → ∃𝑘(𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥))))
35 frn 6493 . . . . . . . 8 (𝑘:𝐼⟶ℝ → ran 𝑘 ⊆ ℝ)
3635adantl 485 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → ran 𝑘 ⊆ ℝ)
37 0red 10633 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
3837snssd 4702 . . . . . . . 8 (𝜑 → {0} ⊆ ℝ)
3938adantr 484 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → {0} ⊆ ℝ)
4036, 39unssd 4113 . . . . . 6 ((𝜑𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
41 ffn 6487 . . . . . . . . . 10 (𝑘:𝐼⟶ℝ → 𝑘 Fn 𝐼)
42 dffn4 6571 . . . . . . . . . 10 (𝑘 Fn 𝐼𝑘:𝐼onto→ran 𝑘)
4341, 42sylib 221 . . . . . . . . 9 (𝑘:𝐼⟶ℝ → 𝑘:𝐼onto→ran 𝑘)
44 fofi 8794 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑘:𝐼onto→ran 𝑘) → ran 𝑘 ∈ Fin)
457, 43, 44syl2an 598 . . . . . . . 8 ((𝜑𝑘:𝐼⟶ℝ) → ran 𝑘 ∈ Fin)
46 snfi 8577 . . . . . . . 8 {0} ∈ Fin
47 unfi 8769 . . . . . . . 8 ((ran 𝑘 ∈ Fin ∧ {0} ∈ Fin) → (ran 𝑘 ∪ {0}) ∈ Fin)
4845, 46, 47sylancl 589 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ∈ Fin)
49 ssun2 4100 . . . . . . . . 9 {0} ⊆ (ran 𝑘 ∪ {0})
50 c0ex 10624 . . . . . . . . . 10 0 ∈ V
5150snid 4561 . . . . . . . . 9 0 ∈ {0}
5249, 51sselii 3912 . . . . . . . 8 0 ∈ (ran 𝑘 ∪ {0})
53 ne0i 4250 . . . . . . . 8 (0 ∈ (ran 𝑘 ∪ {0}) → (ran 𝑘 ∪ {0}) ≠ ∅)
5452, 53mp1i 13 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ≠ ∅)
55 ltso 10710 . . . . . . . 8 < Or ℝ
56 fisupcl 8917 . . . . . . . 8 (( < Or ℝ ∧ ((ran 𝑘 ∪ {0}) ∈ Fin ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ (ran 𝑘 ∪ {0}) ⊆ ℝ)) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ (ran 𝑘 ∪ {0}))
5755, 56mpan 689 . . . . . . 7 (((ran 𝑘 ∪ {0}) ∈ Fin ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ (ran 𝑘 ∪ {0}) ⊆ ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ (ran 𝑘 ∪ {0}))
5848, 54, 40, 57syl3anc 1368 . . . . . 6 ((𝜑𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ (ran 𝑘 ∪ {0}))
5940, 58sseldd 3916 . . . . 5 ((𝜑𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
6059adantrr 716 . . . 4 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
61 metf 22937 . . . . . . 7 (𝐷 ∈ (Met‘𝐵) → 𝐷:(𝐵 × 𝐵)⟶ℝ)
62 ffn 6487 . . . . . . 7 (𝐷:(𝐵 × 𝐵)⟶ℝ → 𝐷 Fn (𝐵 × 𝐵))
6326, 61, 623syl 18 . . . . . 6 (𝜑𝐷 Fn (𝐵 × 𝐵))
6463adantr 484 . . . . 5 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐷 Fn (𝐵 × 𝐵))
6526ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐷 ∈ (Met‘𝐵))
66 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
6766adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑓𝐵)
68 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
6968adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑔𝐵)
70 metcl 22939 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝐵) ∧ 𝑓𝐵𝑔𝐵) → (𝑓𝐷𝑔) ∈ ℝ)
7165, 67, 69, 70syl3anc 1368 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) ∈ ℝ)
72 metge0 22952 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝐵) ∧ 𝑓𝐵𝑔𝐵) → 0 ≤ (𝑓𝐷𝑔))
7365, 67, 69, 72syl3anc 1368 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 0 ≤ (𝑓𝐷𝑔))
7421oveqdr 7163 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = (𝑓(dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))𝑔))
756adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑊)
767adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼 ∈ Fin)
77 fvexd 6660 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑅𝑥) ∈ V)
7877ralrimiva 3149 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑅𝑥) ∈ V)
7924adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
8066, 79eleqtrd 2892 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
8168, 79eleqtrd 2892 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
821, 2, 75, 76, 78, 80, 81, 3, 4, 5prdsdsval3 16750 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
8374, 82eqtrd 2833 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
8483adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
8511adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
861, 2, 75, 76, 78, 3, 80prdsbascl 16748 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
8786r19.21bi 3173 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ 𝑉)
881, 2, 75, 76, 78, 3, 81prdsbascl 16748 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
8988r19.21bi 3173 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝑉)
90 metcl 22939 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ (Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
9185, 87, 89, 90syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
9291ad2ant2r 746 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
93 ffvelrn 6826 . . . . . . . . . . . . . . . . 17 ((𝑘:𝐼⟶ℝ ∧ 𝑥𝐼) → (𝑘𝑥) ∈ ℝ)
9493ad2ant2lr 747 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ∈ ℝ)
9559adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
9695adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
97 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))
9887ad2ant2r 746 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝑥) ∈ 𝑉)
9989ad2ant2r 746 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑔𝑥) ∈ 𝑉)
10097, 98, 99fovrnd 7300 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ (0[,](𝑘𝑥)))
101 0re 10632 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
102 elicc2 12790 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ (𝑘𝑥) ∈ ℝ) → (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ (0[,](𝑘𝑥)) ↔ (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)) ∧ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥))))
103101, 94, 102sylancr 590 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ (0[,](𝑘𝑥)) ↔ (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)) ∧ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥))))
104100, 103mpbid 235 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)) ∧ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥)))
105104simp3d 1141 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥))
10640adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
107106adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
10852, 53mp1i 13 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ≠ ∅)
109 fimaxre2 11574 . . . . . . . . . . . . . . . . . . . 20 (((ran 𝑘 ∪ {0}) ⊆ ℝ ∧ (ran 𝑘 ∪ {0}) ∈ Fin) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
11040, 48, 109syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘:𝐼⟶ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
111110adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
112111adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
113 ssun1 4099 . . . . . . . . . . . . . . . . . 18 ran 𝑘 ⊆ (ran 𝑘 ∪ {0})
11441ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑘 Fn 𝐼)
115 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑥𝐼)
116 fnfvelrn 6825 . . . . . . . . . . . . . . . . . . 19 ((𝑘 Fn 𝐼𝑥𝐼) → (𝑘𝑥) ∈ ran 𝑘)
117114, 115, 116syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ∈ ran 𝑘)
118113, 117sseldi 3913 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ∈ (ran 𝑘 ∪ {0}))
119 suprub 11589 . . . . . . . . . . . . . . . . 17 ((((ran 𝑘 ∪ {0}) ⊆ ℝ ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧) ∧ (𝑘𝑥) ∈ (ran 𝑘 ∪ {0})) → (𝑘𝑥) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
120107, 108, 112, 118, 119syl31anc 1370 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
12192, 94, 96, 105, 120letrd 10786 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
122121expr 460 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ 𝑥𝐼) → (𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
123122ralimdva 3144 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → (∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
124123impr 458 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
125 ovex 7168 . . . . . . . . . . . . . 14 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V
126125rgenw 3118 . . . . . . . . . . . . 13 𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V
127 eqid 2798 . . . . . . . . . . . . . 14 (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))
128 breq1 5033 . . . . . . . . . . . . . 14 (𝑤 = ((𝑓𝑥)𝐸(𝑔𝑥)) → (𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
129127, 128ralrnmptw 6837 . . . . . . . . . . . . 13 (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V → (∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
130126, 129ax-mp 5 . . . . . . . . . . . 12 (∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
131124, 130sylibr 237 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
13240ad2ant2r 746 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
13352, 53mp1i 13 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ≠ ∅)
134110ad2ant2r 746 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
13552a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 0 ∈ (ran 𝑘 ∪ {0}))
136 suprub 11589 . . . . . . . . . . . . . 14 ((((ran 𝑘 ∪ {0}) ⊆ ℝ ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧) ∧ 0 ∈ (ran 𝑘 ∪ {0})) → 0 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
137132, 133, 134, 135, 136syl31anc 1370 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 0 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
138 elsni 4542 . . . . . . . . . . . . . 14 (𝑤 ∈ {0} → 𝑤 = 0)
139138breq1d 5040 . . . . . . . . . . . . 13 (𝑤 ∈ {0} → (𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ 0 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
140137, 139syl5ibrcom 250 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑤 ∈ {0} → 𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
141140ralrimiv 3148 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑤 ∈ {0}𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
142 ralunb 4118 . . . . . . . . . . 11 (∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ (∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ∧ ∀𝑤 ∈ {0}𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
143131, 141, 142sylanbrc 586 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
14491fmpttd 6856 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ)
145144frnd 6494 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ⊆ ℝ)
146 0red 10633 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ∈ ℝ)
147146snssd 4702 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → {0} ⊆ ℝ)
148145, 147unssd 4113 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ)
149 ressxr 10674 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
150148, 149sstrdi 3927 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
151150adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
15260adantlr 714 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
153152rexrd 10680 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ*)
154 supxrleub 12707 . . . . . . . . . . 11 (((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ* ∧ sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ*) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
155151, 153, 154syl2anc 587 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
156143, 155mpbird 260 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
15784, 156eqbrtrd 5052 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
158 elicc2 12790 . . . . . . . . 9 ((0 ∈ ℝ ∧ sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ) → ((𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ ((𝑓𝐷𝑔) ∈ ℝ ∧ 0 ≤ (𝑓𝐷𝑔) ∧ (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))))
159101, 152, 158sylancr 590 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ ((𝑓𝐷𝑔) ∈ ℝ ∧ 0 ≤ (𝑓𝐷𝑔) ∧ (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))))
16071, 73, 157, 159mpbir3and 1339 . . . . . . 7 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
161160an32s 651 . . . . . 6 (((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
162161ralrimivva 3156 . . . . 5 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
163 ffnov 7257 . . . . 5 (𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < ))))
16464, 162, 163sylanbrc 586 . . . 4 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
165 oveq2 7143 . . . . . 6 (𝑚 = sup((ran 𝑘 ∪ {0}), ℝ, < ) → (0[,]𝑚) = (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
166165feq3d 6474 . . . . 5 (𝑚 = sup((ran 𝑘 ∪ {0}), ℝ, < ) → (𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚) ↔ 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < ))))
167166rspcev 3571 . . . 4 ((sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ ∧ 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < ))) → ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚))
16860, 164, 167syl2anc 587 . . 3 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚))
16934, 168exlimddv 1936 . 2 (𝜑 → ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚))
170 isbnd3 35222 . 2 (𝐷 ∈ (Bnd‘𝐵) ↔ (𝐷 ∈ (Met‘𝐵) ∧ ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚)))
17126, 169, 170sylanbrc 586 1 (𝜑𝐷 ∈ (Bnd‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cun 3879  wss 3881  c0 4243  {csn 4525   class class class wbr 5030  cmpt 5110   Or wor 5437   × cxp 5517  ran crn 5520  cres 5521   Fn wfn 6319  wf 6320  ontowfo 6322  cfv 6324  (class class class)co 7135  Fincfn 8492  supcsup 8888  cr 10525  0cc0 10526  *cxr 10663   < clt 10664  cle 10665  [,]cicc 12729  Basecbs 16475  distcds 16566  Xscprds 16711  Metcmet 20077  Bndcbnd 35205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-ec 8274  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-prds 16713  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-bnd 35217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator