Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivbnd2 Structured version   Visualization version   GIF version

Theorem equivbnd2 35877
Description: If balls are totally bounded in the metric 𝑀, then balls are totally bounded in the equivalent metric 𝑁. (Contributed by Mario Carneiro, 15-Sep-2015.)
Hypotheses
Ref Expression
equivbnd2.1 (𝜑𝑀 ∈ (Met‘𝑋))
equivbnd2.2 (𝜑𝑁 ∈ (Met‘𝑋))
equivbnd2.3 (𝜑𝑅 ∈ ℝ+)
equivbnd2.4 (𝜑𝑆 ∈ ℝ+)
equivbnd2.5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
equivbnd2.6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
equivbnd2.7 𝐶 = (𝑀 ↾ (𝑌 × 𝑌))
equivbnd2.8 𝐷 = (𝑁 ↾ (𝑌 × 𝑌))
equivbnd2.9 (𝜑 → (𝐶 ∈ (TotBnd‘𝑌) ↔ 𝐶 ∈ (Bnd‘𝑌)))
Assertion
Ref Expression
equivbnd2 (𝜑 → (𝐷 ∈ (TotBnd‘𝑌) ↔ 𝐷 ∈ (Bnd‘𝑌)))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem equivbnd2
StepHypRef Expression
1 totbndbnd 35874 . 2 (𝐷 ∈ (TotBnd‘𝑌) → 𝐷 ∈ (Bnd‘𝑌))
2 simpr 484 . . . . . 6 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (Bnd‘𝑌))
3 equivbnd2.7 . . . . . . 7 𝐶 = (𝑀 ↾ (𝑌 × 𝑌))
4 equivbnd2.1 . . . . . . . . 9 (𝜑𝑀 ∈ (Met‘𝑋))
54adantr 480 . . . . . . . 8 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑀 ∈ (Met‘𝑋))
6 equivbnd2.2 . . . . . . . . 9 (𝜑𝑁 ∈ (Met‘𝑋))
7 equivbnd2.8 . . . . . . . . . 10 𝐷 = (𝑁 ↾ (𝑌 × 𝑌))
87bnd2lem 35876 . . . . . . . . 9 ((𝑁 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌𝑋)
96, 8sylan 579 . . . . . . . 8 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑌𝑋)
10 metres2 23424 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑀 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
115, 9, 10syl2anc 583 . . . . . . 7 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → (𝑀 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
123, 11eqeltrid 2843 . . . . . 6 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (Met‘𝑌))
13 equivbnd2.4 . . . . . . 7 (𝜑𝑆 ∈ ℝ+)
1413adantr 480 . . . . . 6 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑆 ∈ ℝ+)
159sselda 3917 . . . . . . . . 9 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ 𝑥𝑌) → 𝑥𝑋)
169sselda 3917 . . . . . . . . 9 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ 𝑦𝑌) → 𝑦𝑋)
1715, 16anim12dan 618 . . . . . . . 8 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑋𝑦𝑋))
18 equivbnd2.6 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
1918adantlr 711 . . . . . . . 8 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
2017, 19syldan 590 . . . . . . 7 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
213oveqi 7268 . . . . . . . . 9 (𝑥𝐶𝑦) = (𝑥(𝑀 ↾ (𝑌 × 𝑌))𝑦)
22 ovres 7416 . . . . . . . . 9 ((𝑥𝑌𝑦𝑌) → (𝑥(𝑀 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝑀𝑦))
2321, 22syl5eq 2791 . . . . . . . 8 ((𝑥𝑌𝑦𝑌) → (𝑥𝐶𝑦) = (𝑥𝑀𝑦))
2423adantl 481 . . . . . . 7 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐶𝑦) = (𝑥𝑀𝑦))
257oveqi 7268 . . . . . . . . . 10 (𝑥𝐷𝑦) = (𝑥(𝑁 ↾ (𝑌 × 𝑌))𝑦)
26 ovres 7416 . . . . . . . . . 10 ((𝑥𝑌𝑦𝑌) → (𝑥(𝑁 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝑁𝑦))
2725, 26syl5eq 2791 . . . . . . . . 9 ((𝑥𝑌𝑦𝑌) → (𝑥𝐷𝑦) = (𝑥𝑁𝑦))
2827adantl 481 . . . . . . . 8 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐷𝑦) = (𝑥𝑁𝑦))
2928oveq2d 7271 . . . . . . 7 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑆 · (𝑥𝐷𝑦)) = (𝑆 · (𝑥𝑁𝑦)))
3020, 24, 293brtr4d 5102 . . . . . 6 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐶𝑦) ≤ (𝑆 · (𝑥𝐷𝑦)))
312, 12, 14, 30equivbnd 35875 . . . . 5 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (Bnd‘𝑌))
32 equivbnd2.9 . . . . . 6 (𝜑 → (𝐶 ∈ (TotBnd‘𝑌) ↔ 𝐶 ∈ (Bnd‘𝑌)))
3332biimpar 477 . . . . 5 ((𝜑𝐶 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (TotBnd‘𝑌))
3431, 33syldan 590 . . . 4 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (TotBnd‘𝑌))
35 bndmet 35866 . . . . 5 (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (Met‘𝑌))
3635adantl 481 . . . 4 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (Met‘𝑌))
37 equivbnd2.3 . . . . 5 (𝜑𝑅 ∈ ℝ+)
3837adantr 480 . . . 4 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑅 ∈ ℝ+)
39 equivbnd2.5 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
4039adantlr 711 . . . . . 6 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
4117, 40syldan 590 . . . . 5 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
4224oveq2d 7271 . . . . 5 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑅 · (𝑥𝐶𝑦)) = (𝑅 · (𝑥𝑀𝑦)))
4341, 28, 423brtr4d 5102 . . . 4 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐷𝑦) ≤ (𝑅 · (𝑥𝐶𝑦)))
4434, 36, 38, 43equivtotbnd 35863 . . 3 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (TotBnd‘𝑌))
4544ex 412 . 2 (𝜑 → (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (TotBnd‘𝑌)))
461, 45impbid2 225 1 (𝜑 → (𝐷 ∈ (TotBnd‘𝑌) ↔ 𝐷 ∈ (Bnd‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wss 3883   class class class wbr 5070   × cxp 5578  cres 5582  cfv 6418  (class class class)co 7255   · cmul 10807  cle 10941  +crp 12659  Metcmet 20496  TotBndctotbnd 35851  Bndcbnd 35852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-ec 8458  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-totbnd 35853  df-bnd 35864
This theorem is referenced by:  rrntotbnd  35921
  Copyright terms: Public domain W3C validator