Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivbnd2 Structured version   Visualization version   GIF version

Theorem equivbnd2 35230
Description: If balls are totally bounded in the metric 𝑀, then balls are totally bounded in the equivalent metric 𝑁. (Contributed by Mario Carneiro, 15-Sep-2015.)
Hypotheses
Ref Expression
equivbnd2.1 (𝜑𝑀 ∈ (Met‘𝑋))
equivbnd2.2 (𝜑𝑁 ∈ (Met‘𝑋))
equivbnd2.3 (𝜑𝑅 ∈ ℝ+)
equivbnd2.4 (𝜑𝑆 ∈ ℝ+)
equivbnd2.5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
equivbnd2.6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
equivbnd2.7 𝐶 = (𝑀 ↾ (𝑌 × 𝑌))
equivbnd2.8 𝐷 = (𝑁 ↾ (𝑌 × 𝑌))
equivbnd2.9 (𝜑 → (𝐶 ∈ (TotBnd‘𝑌) ↔ 𝐶 ∈ (Bnd‘𝑌)))
Assertion
Ref Expression
equivbnd2 (𝜑 → (𝐷 ∈ (TotBnd‘𝑌) ↔ 𝐷 ∈ (Bnd‘𝑌)))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem equivbnd2
StepHypRef Expression
1 totbndbnd 35227 . 2 (𝐷 ∈ (TotBnd‘𝑌) → 𝐷 ∈ (Bnd‘𝑌))
2 simpr 488 . . . . . 6 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (Bnd‘𝑌))
3 equivbnd2.7 . . . . . . 7 𝐶 = (𝑀 ↾ (𝑌 × 𝑌))
4 equivbnd2.1 . . . . . . . . 9 (𝜑𝑀 ∈ (Met‘𝑋))
54adantr 484 . . . . . . . 8 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑀 ∈ (Met‘𝑋))
6 equivbnd2.2 . . . . . . . . 9 (𝜑𝑁 ∈ (Met‘𝑋))
7 equivbnd2.8 . . . . . . . . . 10 𝐷 = (𝑁 ↾ (𝑌 × 𝑌))
87bnd2lem 35229 . . . . . . . . 9 ((𝑁 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌𝑋)
96, 8sylan 583 . . . . . . . 8 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑌𝑋)
10 metres2 22970 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑀 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
115, 9, 10syl2anc 587 . . . . . . 7 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → (𝑀 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
123, 11eqeltrid 2894 . . . . . 6 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (Met‘𝑌))
13 equivbnd2.4 . . . . . . 7 (𝜑𝑆 ∈ ℝ+)
1413adantr 484 . . . . . 6 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑆 ∈ ℝ+)
159sselda 3915 . . . . . . . . 9 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ 𝑥𝑌) → 𝑥𝑋)
169sselda 3915 . . . . . . . . 9 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ 𝑦𝑌) → 𝑦𝑋)
1715, 16anim12dan 621 . . . . . . . 8 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑋𝑦𝑋))
18 equivbnd2.6 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
1918adantlr 714 . . . . . . . 8 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
2017, 19syldan 594 . . . . . . 7 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
213oveqi 7148 . . . . . . . . 9 (𝑥𝐶𝑦) = (𝑥(𝑀 ↾ (𝑌 × 𝑌))𝑦)
22 ovres 7294 . . . . . . . . 9 ((𝑥𝑌𝑦𝑌) → (𝑥(𝑀 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝑀𝑦))
2321, 22syl5eq 2845 . . . . . . . 8 ((𝑥𝑌𝑦𝑌) → (𝑥𝐶𝑦) = (𝑥𝑀𝑦))
2423adantl 485 . . . . . . 7 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐶𝑦) = (𝑥𝑀𝑦))
257oveqi 7148 . . . . . . . . . 10 (𝑥𝐷𝑦) = (𝑥(𝑁 ↾ (𝑌 × 𝑌))𝑦)
26 ovres 7294 . . . . . . . . . 10 ((𝑥𝑌𝑦𝑌) → (𝑥(𝑁 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝑁𝑦))
2725, 26syl5eq 2845 . . . . . . . . 9 ((𝑥𝑌𝑦𝑌) → (𝑥𝐷𝑦) = (𝑥𝑁𝑦))
2827adantl 485 . . . . . . . 8 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐷𝑦) = (𝑥𝑁𝑦))
2928oveq2d 7151 . . . . . . 7 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑆 · (𝑥𝐷𝑦)) = (𝑆 · (𝑥𝑁𝑦)))
3020, 24, 293brtr4d 5062 . . . . . 6 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐶𝑦) ≤ (𝑆 · (𝑥𝐷𝑦)))
312, 12, 14, 30equivbnd 35228 . . . . 5 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (Bnd‘𝑌))
32 equivbnd2.9 . . . . . 6 (𝜑 → (𝐶 ∈ (TotBnd‘𝑌) ↔ 𝐶 ∈ (Bnd‘𝑌)))
3332biimpar 481 . . . . 5 ((𝜑𝐶 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (TotBnd‘𝑌))
3431, 33syldan 594 . . . 4 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (TotBnd‘𝑌))
35 bndmet 35219 . . . . 5 (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (Met‘𝑌))
3635adantl 485 . . . 4 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (Met‘𝑌))
37 equivbnd2.3 . . . . 5 (𝜑𝑅 ∈ ℝ+)
3837adantr 484 . . . 4 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑅 ∈ ℝ+)
39 equivbnd2.5 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
4039adantlr 714 . . . . . 6 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
4117, 40syldan 594 . . . . 5 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
4224oveq2d 7151 . . . . 5 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑅 · (𝑥𝐶𝑦)) = (𝑅 · (𝑥𝑀𝑦)))
4341, 28, 423brtr4d 5062 . . . 4 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐷𝑦) ≤ (𝑅 · (𝑥𝐶𝑦)))
4434, 36, 38, 43equivtotbnd 35216 . . 3 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (TotBnd‘𝑌))
4544ex 416 . 2 (𝜑 → (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (TotBnd‘𝑌)))
461, 45impbid2 229 1 (𝜑 → (𝐷 ∈ (TotBnd‘𝑌) ↔ 𝐷 ∈ (Bnd‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wss 3881   class class class wbr 5030   × cxp 5517  cres 5521  cfv 6324  (class class class)co 7135   · cmul 10531  cle 10665  +crp 12377  Metcmet 20077  TotBndctotbnd 35204  Bndcbnd 35205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-ec 8274  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-totbnd 35206  df-bnd 35217
This theorem is referenced by:  rrntotbnd  35274
  Copyright terms: Public domain W3C validator