| Step | Hyp | Ref
| Expression |
| 1 | | bndmet 37788 |
. . 3
⊢ (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋)) |
| 2 | | 0re 11263 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 3 | 2 | ne0ii 4344 |
. . . . 5
⊢ ℝ
≠ ∅ |
| 4 | | metf 24340 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ) |
| 5 | 4 | ffnd 6737 |
. . . . . . . . 9
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀 Fn (𝑋 × 𝑋)) |
| 6 | 1, 5 | syl 17 |
. . . . . . . 8
⊢ (𝑀 ∈ (Bnd‘𝑋) → 𝑀 Fn (𝑋 × 𝑋)) |
| 7 | 6 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀 Fn (𝑋 × 𝑋)) |
| 8 | 1, 4 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (Bnd‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ) |
| 9 | 8 | fdmd 6746 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (Bnd‘𝑋) → dom 𝑀 = (𝑋 × 𝑋)) |
| 10 | | xpeq2 5706 |
. . . . . . . . . . . 12
⊢ (𝑋 = ∅ → (𝑋 × 𝑋) = (𝑋 × ∅)) |
| 11 | | xp0 6178 |
. . . . . . . . . . . 12
⊢ (𝑋 × ∅) =
∅ |
| 12 | 10, 11 | eqtrdi 2793 |
. . . . . . . . . . 11
⊢ (𝑋 = ∅ → (𝑋 × 𝑋) = ∅) |
| 13 | 9, 12 | sylan9eq 2797 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → dom 𝑀 = ∅) |
| 14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → dom 𝑀 = ∅) |
| 15 | | dm0rn0 5935 |
. . . . . . . . 9
⊢ (dom
𝑀 = ∅ ↔ ran
𝑀 =
∅) |
| 16 | 14, 15 | sylib 218 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 = ∅) |
| 17 | | 0ss 4400 |
. . . . . . . 8
⊢ ∅
⊆ (0[,]𝑥) |
| 18 | 16, 17 | eqsstrdi 4028 |
. . . . . . 7
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 ⊆ (0[,]𝑥)) |
| 19 | | df-f 6565 |
. . . . . . 7
⊢ (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ran 𝑀 ⊆ (0[,]𝑥))) |
| 20 | 7, 18, 19 | sylanbrc 583 |
. . . . . 6
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 21 | 20 | ralrimiva 3146 |
. . . . 5
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 22 | | r19.2z 4495 |
. . . . 5
⊢ ((ℝ
≠ ∅ ∧ ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 23 | 3, 21, 22 | sylancr 587 |
. . . 4
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 24 | | isbnd2 37790 |
. . . . . 6
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))) |
| 25 | 24 | simprbi 496 |
. . . . 5
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
| 26 | | 2re 12340 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
| 27 | | simprlr 780 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ+) |
| 28 | 27 | rpred 13077 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ) |
| 29 | | remulcl 11240 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ 𝑟
∈ ℝ) → (2 · 𝑟) ∈ ℝ) |
| 30 | 26, 28, 29 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → (2 · 𝑟) ∈ ℝ) |
| 31 | 5 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀 Fn (𝑋 × 𝑋)) |
| 32 | | simpll 767 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑀 ∈ (Met‘𝑋)) |
| 33 | | simprl 771 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
| 34 | | simprr 773 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
| 35 | | metcl 24342 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥𝑀𝑧) ∈ ℝ) |
| 36 | 32, 33, 34, 35 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ∈ ℝ) |
| 37 | | metge0 24355 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → 0 ≤ (𝑥𝑀𝑧)) |
| 38 | 32, 33, 34, 37 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ≤ (𝑥𝑀𝑧)) |
| 39 | 30 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (2 · 𝑟) ∈ ℝ) |
| 40 | | simprll 779 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑦 ∈ 𝑋) |
| 41 | 40 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
| 42 | | metcl 24342 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑦𝑀𝑥) ∈ ℝ) |
| 43 | 32, 41, 33, 42 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑥) ∈ ℝ) |
| 44 | | metcl 24342 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ ℝ) |
| 45 | 32, 41, 34, 44 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑧) ∈ ℝ) |
| 46 | 43, 45 | readdcld 11290 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) ∈ ℝ) |
| 47 | | mettri2 24351 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧))) |
| 48 | 32, 41, 33, 34, 47 | syl13anc 1374 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧))) |
| 49 | 28 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑟 ∈ ℝ) |
| 50 | | simplrr 778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
| 51 | 33, 50 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑥 ∈ (𝑦(ball‘𝑀)𝑟)) |
| 52 | | metxmet 24344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋)) |
| 53 | 32, 52 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑀 ∈ (∞Met‘𝑋)) |
| 54 | | rpxr 13044 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
| 55 | 54 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → 𝑟 ∈ ℝ*) |
| 56 | 55 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑟 ∈ ℝ*) |
| 57 | | elbl2 24400 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟)) |
| 58 | 53, 56, 41, 33, 57 | syl22anc 839 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟)) |
| 59 | 51, 58 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑥) < 𝑟) |
| 60 | 34, 50 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ (𝑦(ball‘𝑀)𝑟)) |
| 61 | | elbl2 24400 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟)) |
| 62 | 53, 56, 41, 34, 61 | syl22anc 839 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟)) |
| 63 | 60, 62 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑧) < 𝑟) |
| 64 | 43, 45, 49, 49, 59, 63 | lt2addd 11886 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (𝑟 + 𝑟)) |
| 65 | 49 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑟 ∈ ℂ) |
| 66 | 65 | 2timesd 12509 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (2 · 𝑟) = (𝑟 + 𝑟)) |
| 67 | 64, 66 | breqtrrd 5171 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (2 · 𝑟)) |
| 68 | 36, 46, 39, 48, 67 | lelttrd 11419 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) < (2 · 𝑟)) |
| 69 | 36, 39, 68 | ltled 11409 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ≤ (2 · 𝑟)) |
| 70 | | elicc2 13452 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ (2 · 𝑟) ∈ ℝ) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟)))) |
| 71 | 2, 39, 70 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟)))) |
| 72 | 36, 38, 69, 71 | mpbir3and 1343 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟))) |
| 73 | 72 | ralrimivva 3202 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∀𝑥 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟))) |
| 74 | | ffnov 7559 |
. . . . . . . . . . 11
⊢ (𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑥 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)))) |
| 75 | 31, 73, 74 | sylanbrc 583 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))) |
| 76 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑥 = (2 · 𝑟) → (0[,]𝑥) = (0[,](2 · 𝑟))) |
| 77 | 76 | feq3d 6723 |
. . . . . . . . . . 11
⊢ (𝑥 = (2 · 𝑟) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)))) |
| 78 | 77 | rspcev 3622 |
. . . . . . . . . 10
⊢ (((2
· 𝑟) ∈ ℝ
∧ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 79 | 30, 75, 78 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 80 | 79 | expr 456 |
. . . . . . . 8
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
| 81 | 80 | rexlimdvva 3213 |
. . . . . . 7
⊢ (𝑀 ∈ (Met‘𝑋) → (∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
| 82 | 1, 81 | syl 17 |
. . . . . 6
⊢ (𝑀 ∈ (Bnd‘𝑋) → (∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
| 83 | 82 | adantr 480 |
. . . . 5
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → (∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
| 84 | 25, 83 | mpd 15 |
. . . 4
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 85 | 23, 84 | pm2.61dane 3029 |
. . 3
⊢ (𝑀 ∈ (Bnd‘𝑋) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 86 | 1, 85 | jca 511 |
. 2
⊢ (𝑀 ∈ (Bnd‘𝑋) → (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
| 87 | | simpll 767 |
. . . 4
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Met‘𝑋)) |
| 88 | | simpllr 776 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑥 ∈ ℝ) |
| 89 | 87 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑀 ∈ (Met‘𝑋)) |
| 90 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
| 91 | | met0 24353 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑦𝑀𝑦) = 0) |
| 92 | 89, 90, 91 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑦𝑀𝑦) = 0) |
| 93 | | simplr 769 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 94 | 93, 90, 90 | fovcdmd 7605 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑦𝑀𝑦) ∈ (0[,]𝑥)) |
| 95 | | elicc2 13452 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ 𝑥
∈ ℝ) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥))) |
| 96 | 2, 88, 95 | sylancr 587 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥))) |
| 97 | 94, 96 | mpbid 232 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥)) |
| 98 | 97 | simp3d 1145 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑦𝑀𝑦) ≤ 𝑥) |
| 99 | 92, 98 | eqbrtrrd 5167 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 0 ≤ 𝑥) |
| 100 | 88, 99 | ge0p1rpd 13107 |
. . . . . 6
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑥 + 1) ∈
ℝ+) |
| 101 | | fovcdm 7603 |
. . . . . . . . . . . . . 14
⊢ ((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥)) |
| 102 | 101 | 3expa 1119 |
. . . . . . . . . . . . 13
⊢ (((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥)) |
| 103 | 102 | adantlll 718 |
. . . . . . . . . . . 12
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥)) |
| 104 | | elicc2 13452 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ 𝑥
∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))) |
| 105 | 2, 88, 104 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))) |
| 106 | 105 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))) |
| 107 | 103, 106 | mpbid 232 |
. . . . . . . . . . 11
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)) |
| 108 | 107 | simp1d 1143 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ ℝ) |
| 109 | 88 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → 𝑥 ∈ ℝ) |
| 110 | | peano2re 11434 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈
ℝ) |
| 111 | 88, 110 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑥 + 1) ∈ ℝ) |
| 112 | 111 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑥 + 1) ∈ ℝ) |
| 113 | 107 | simp3d 1145 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ≤ 𝑥) |
| 114 | 109 | ltp1d 12198 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → 𝑥 < (𝑥 + 1)) |
| 115 | 108, 109,
112, 113, 114 | lelttrd 11419 |
. . . . . . . . 9
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) < (𝑥 + 1)) |
| 116 | 115 | ralrimiva 3146 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) < (𝑥 + 1)) |
| 117 | | rabid2 3470 |
. . . . . . . 8
⊢ (𝑋 = {𝑧 ∈ 𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)} ↔ ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) < (𝑥 + 1)) |
| 118 | 116, 117 | sylibr 234 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑋 = {𝑧 ∈ 𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)}) |
| 119 | 89, 52 | syl 17 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑀 ∈ (∞Met‘𝑋)) |
| 120 | 111 | rexrd 11311 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑥 + 1) ∈
ℝ*) |
| 121 | | blval 24396 |
. . . . . . . 8
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ (𝑥 + 1) ∈ ℝ*) →
(𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧 ∈ 𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)}) |
| 122 | 119, 90, 120, 121 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧 ∈ 𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)}) |
| 123 | 118, 122 | eqtr4d 2780 |
. . . . . 6
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1))) |
| 124 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑟 = (𝑥 + 1) → (𝑦(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)(𝑥 + 1))) |
| 125 | 124 | rspceeqv 3645 |
. . . . . 6
⊢ (((𝑥 + 1) ∈ ℝ+
∧ 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1))) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
| 126 | 100, 123,
125 | syl2anc 584 |
. . . . 5
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
| 127 | 126 | ralrimiva 3146 |
. . . 4
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
| 128 | | isbnd 37787 |
. . . 4
⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))) |
| 129 | 87, 127, 128 | sylanbrc 583 |
. . 3
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋)) |
| 130 | 129 | r19.29an 3158 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋)) |
| 131 | 86, 130 | impbii 209 |
1
⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |