Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd3 Structured version   Visualization version   GIF version

Theorem isbnd3 37778
Description: A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 13-Sep-2015.)
Assertion
Ref Expression
isbnd3 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑋

Proof of Theorem isbnd3
Dummy variables 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bndmet 37775 . . 3 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
2 0re 11176 . . . . . 6 0 ∈ ℝ
32ne0ii 4307 . . . . 5 ℝ ≠ ∅
4 metf 24218 . . . . . . . . . 10 (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
54ffnd 6689 . . . . . . . . 9 (𝑀 ∈ (Met‘𝑋) → 𝑀 Fn (𝑋 × 𝑋))
61, 5syl 17 . . . . . . . 8 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 Fn (𝑋 × 𝑋))
76ad2antrr 726 . . . . . . 7 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀 Fn (𝑋 × 𝑋))
81, 4syl 17 . . . . . . . . . . . 12 (𝑀 ∈ (Bnd‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
98fdmd 6698 . . . . . . . . . . 11 (𝑀 ∈ (Bnd‘𝑋) → dom 𝑀 = (𝑋 × 𝑋))
10 xpeq2 5659 . . . . . . . . . . . 12 (𝑋 = ∅ → (𝑋 × 𝑋) = (𝑋 × ∅))
11 xp0 6131 . . . . . . . . . . . 12 (𝑋 × ∅) = ∅
1210, 11eqtrdi 2780 . . . . . . . . . . 11 (𝑋 = ∅ → (𝑋 × 𝑋) = ∅)
139, 12sylan9eq 2784 . . . . . . . . . 10 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → dom 𝑀 = ∅)
1413adantr 480 . . . . . . . . 9 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → dom 𝑀 = ∅)
15 dm0rn0 5888 . . . . . . . . 9 (dom 𝑀 = ∅ ↔ ran 𝑀 = ∅)
1614, 15sylib 218 . . . . . . . 8 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 = ∅)
17 0ss 4363 . . . . . . . 8 ∅ ⊆ (0[,]𝑥)
1816, 17eqsstrdi 3991 . . . . . . 7 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 ⊆ (0[,]𝑥))
19 df-f 6515 . . . . . . 7 (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ran 𝑀 ⊆ (0[,]𝑥)))
207, 18, 19sylanbrc 583 . . . . . 6 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
2120ralrimiva 3125 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
22 r19.2z 4458 . . . . 5 ((ℝ ≠ ∅ ∧ ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
233, 21, 22sylancr 587 . . . 4 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
24 isbnd2 37777 . . . . . 6 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
2524simprbi 496 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
26 2re 12260 . . . . . . . . . . 11 2 ∈ ℝ
27 simprlr 779 . . . . . . . . . . . 12 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ+)
2827rpred 12995 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ)
29 remulcl 11153 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (2 · 𝑟) ∈ ℝ)
3026, 28, 29sylancr 587 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → (2 · 𝑟) ∈ ℝ)
315adantr 480 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀 Fn (𝑋 × 𝑋))
32 simpll 766 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑀 ∈ (Met‘𝑋))
33 simprl 770 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑥𝑋)
34 simprr 772 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑧𝑋)
35 metcl 24220 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → (𝑥𝑀𝑧) ∈ ℝ)
3632, 33, 34, 35syl3anc 1373 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ∈ ℝ)
37 metge0 24233 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → 0 ≤ (𝑥𝑀𝑧))
3832, 33, 34, 37syl3anc 1373 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 0 ≤ (𝑥𝑀𝑧))
3930adantr 480 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (2 · 𝑟) ∈ ℝ)
40 simprll 778 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑦𝑋)
4140adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑦𝑋)
42 metcl 24220 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑥𝑋) → (𝑦𝑀𝑥) ∈ ℝ)
4332, 41, 33, 42syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑥) ∈ ℝ)
44 metcl 24220 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑀𝑧) ∈ ℝ)
4532, 41, 34, 44syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑧) ∈ ℝ)
4643, 45readdcld 11203 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) ∈ ℝ)
47 mettri2 24229 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)))
4832, 41, 33, 34, 47syl13anc 1374 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)))
4928adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℝ)
50 simplrr 777 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑋 = (𝑦(ball‘𝑀)𝑟))
5133, 50eleqtrd 2830 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑥 ∈ (𝑦(ball‘𝑀)𝑟))
52 metxmet 24222 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
5332, 52syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑀 ∈ (∞Met‘𝑋))
54 rpxr 12961 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
5554ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → 𝑟 ∈ ℝ*)
5655ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℝ*)
57 elbl2 24278 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦𝑋𝑥𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟))
5853, 56, 41, 33, 57syl22anc 838 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟))
5951, 58mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑥) < 𝑟)
6034, 50eleqtrd 2830 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑧 ∈ (𝑦(ball‘𝑀)𝑟))
61 elbl2 24278 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦𝑋𝑧𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟))
6253, 56, 41, 34, 61syl22anc 838 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟))
6360, 62mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑧) < 𝑟)
6443, 45, 49, 49, 59, 63lt2addd 11801 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (𝑟 + 𝑟))
6549recnd 11202 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℂ)
66652timesd 12425 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (2 · 𝑟) = (𝑟 + 𝑟))
6764, 66breqtrrd 5135 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (2 · 𝑟))
6836, 46, 39, 48, 67lelttrd 11332 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) < (2 · 𝑟))
6936, 39, 68ltled 11322 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ (2 · 𝑟))
70 elicc2 13372 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (2 · 𝑟) ∈ ℝ) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟))))
712, 39, 70sylancr 587 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟))))
7236, 38, 69, 71mpbir3and 1343 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)))
7372ralrimivva 3180 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∀𝑥𝑋𝑧𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)))
74 ffnov 7515 . . . . . . . . . . 11 (𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑥𝑋𝑧𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟))))
7531, 73, 74sylanbrc 583 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)))
76 oveq2 7395 . . . . . . . . . . . 12 (𝑥 = (2 · 𝑟) → (0[,]𝑥) = (0[,](2 · 𝑟)))
7776feq3d 6673 . . . . . . . . . . 11 (𝑥 = (2 · 𝑟) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))))
7877rspcev 3588 . . . . . . . . . 10 (((2 · 𝑟) ∈ ℝ ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
7930, 75, 78syl2anc 584 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
8079expr 456 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑟 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8180rexlimdvva 3194 . . . . . . 7 (𝑀 ∈ (Met‘𝑋) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
821, 81syl 17 . . . . . 6 (𝑀 ∈ (Bnd‘𝑋) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8382adantr 480 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8425, 83mpd 15 . . . 4 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
8523, 84pm2.61dane 3012 . . 3 (𝑀 ∈ (Bnd‘𝑋) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
861, 85jca 511 . 2 (𝑀 ∈ (Bnd‘𝑋) → (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
87 simpll 766 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Met‘𝑋))
88 simpllr 775 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑥 ∈ ℝ)
8987adantr 480 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀 ∈ (Met‘𝑋))
90 simpr 484 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑦𝑋)
91 met0 24231 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) = 0)
9289, 90, 91syl2anc 584 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) = 0)
93 simplr 768 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
9493, 90, 90fovcdmd 7561 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) ∈ (0[,]𝑥))
95 elicc2 13372 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥)))
962, 88, 95sylancr 587 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥)))
9794, 96mpbid 232 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥))
9897simp3d 1144 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) ≤ 𝑥)
9992, 98eqbrtrrd 5131 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 0 ≤ 𝑥)
10088, 99ge0p1rpd 13025 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ+)
101 fovcdm 7559 . . . . . . . . . . . . . 14 ((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
1021013expa 1118 . . . . . . . . . . . . 13 (((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
103102adantlll 718 . . . . . . . . . . . 12 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
104 elicc2 13372 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
1052, 88, 104sylancr 587 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
106105adantr 480 . . . . . . . . . . . 12 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
107103, 106mpbid 232 . . . . . . . . . . 11 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))
108107simp1d 1142 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ ℝ)
10988adantr 480 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → 𝑥 ∈ ℝ)
110 peano2re 11347 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
11188, 110syl 17 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ)
112111adantr 480 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑥 + 1) ∈ ℝ)
113107simp3d 1144 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ≤ 𝑥)
114109ltp1d 12113 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → 𝑥 < (𝑥 + 1))
115108, 109, 112, 113, 114lelttrd 11332 . . . . . . . . 9 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) < (𝑥 + 1))
116115ralrimiva 3125 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ∀𝑧𝑋 (𝑦𝑀𝑧) < (𝑥 + 1))
117 rabid2 3439 . . . . . . . 8 (𝑋 = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)} ↔ ∀𝑧𝑋 (𝑦𝑀𝑧) < (𝑥 + 1))
118116, 117sylibr 234 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑋 = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
11989, 52syl 17 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀 ∈ (∞Met‘𝑋))
120111rexrd 11224 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ*)
121 blval 24274 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (𝑥 + 1) ∈ ℝ*) → (𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
122119, 90, 120, 121syl3anc 1373 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
123118, 122eqtr4d 2767 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1)))
124 oveq2 7395 . . . . . . 7 (𝑟 = (𝑥 + 1) → (𝑦(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)(𝑥 + 1)))
125124rspceeqv 3611 . . . . . 6 (((𝑥 + 1) ∈ ℝ+𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1))) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
126100, 123, 125syl2anc 584 . . . . 5 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
127126ralrimiva 3125 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
128 isbnd 37774 . . . 4 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
12987, 127, 128sylanbrc 583 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋))
130129r19.29an 3137 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋))
13186, 130impbii 209 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  wss 3914  c0 4296   class class class wbr 5107   × cxp 5636  dom cdm 5638  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  2c2 12241  +crp 12951  [,]cicc 13309  ∞Metcxmet 21249  Metcmet 21250  ballcbl 21251  Bndcbnd 37761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-ec 8673  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-bnd 37773
This theorem is referenced by:  isbnd3b  37779  prdsbnd  37787
  Copyright terms: Public domain W3C validator