Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd3 Structured version   Visualization version   GIF version

Theorem isbnd3 35222
Description: A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 13-Sep-2015.)
Assertion
Ref Expression
isbnd3 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑋

Proof of Theorem isbnd3
Dummy variables 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bndmet 35219 . . 3 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
2 0re 10632 . . . . . 6 0 ∈ ℝ
32ne0ii 4253 . . . . 5 ℝ ≠ ∅
4 metf 22937 . . . . . . . . . 10 (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
54ffnd 6488 . . . . . . . . 9 (𝑀 ∈ (Met‘𝑋) → 𝑀 Fn (𝑋 × 𝑋))
61, 5syl 17 . . . . . . . 8 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 Fn (𝑋 × 𝑋))
76ad2antrr 725 . . . . . . 7 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀 Fn (𝑋 × 𝑋))
81, 4syl 17 . . . . . . . . . . . 12 (𝑀 ∈ (Bnd‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
98fdmd 6497 . . . . . . . . . . 11 (𝑀 ∈ (Bnd‘𝑋) → dom 𝑀 = (𝑋 × 𝑋))
10 xpeq2 5540 . . . . . . . . . . . 12 (𝑋 = ∅ → (𝑋 × 𝑋) = (𝑋 × ∅))
11 xp0 5982 . . . . . . . . . . . 12 (𝑋 × ∅) = ∅
1210, 11eqtrdi 2849 . . . . . . . . . . 11 (𝑋 = ∅ → (𝑋 × 𝑋) = ∅)
139, 12sylan9eq 2853 . . . . . . . . . 10 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → dom 𝑀 = ∅)
1413adantr 484 . . . . . . . . 9 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → dom 𝑀 = ∅)
15 dm0rn0 5759 . . . . . . . . 9 (dom 𝑀 = ∅ ↔ ran 𝑀 = ∅)
1614, 15sylib 221 . . . . . . . 8 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 = ∅)
17 0ss 4304 . . . . . . . 8 ∅ ⊆ (0[,]𝑥)
1816, 17eqsstrdi 3969 . . . . . . 7 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 ⊆ (0[,]𝑥))
19 df-f 6328 . . . . . . 7 (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ran 𝑀 ⊆ (0[,]𝑥)))
207, 18, 19sylanbrc 586 . . . . . 6 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
2120ralrimiva 3149 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
22 r19.2z 4398 . . . . 5 ((ℝ ≠ ∅ ∧ ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
233, 21, 22sylancr 590 . . . 4 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
24 isbnd2 35221 . . . . . 6 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
2524simprbi 500 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
26 2re 11699 . . . . . . . . . . 11 2 ∈ ℝ
27 simprlr 779 . . . . . . . . . . . 12 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ+)
2827rpred 12419 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ)
29 remulcl 10611 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (2 · 𝑟) ∈ ℝ)
3026, 28, 29sylancr 590 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → (2 · 𝑟) ∈ ℝ)
315adantr 484 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀 Fn (𝑋 × 𝑋))
32 simpll 766 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑀 ∈ (Met‘𝑋))
33 simprl 770 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑥𝑋)
34 simprr 772 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑧𝑋)
35 metcl 22939 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → (𝑥𝑀𝑧) ∈ ℝ)
3632, 33, 34, 35syl3anc 1368 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ∈ ℝ)
37 metge0 22952 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → 0 ≤ (𝑥𝑀𝑧))
3832, 33, 34, 37syl3anc 1368 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 0 ≤ (𝑥𝑀𝑧))
3930adantr 484 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (2 · 𝑟) ∈ ℝ)
40 simprll 778 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑦𝑋)
4140adantr 484 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑦𝑋)
42 metcl 22939 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑥𝑋) → (𝑦𝑀𝑥) ∈ ℝ)
4332, 41, 33, 42syl3anc 1368 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑥) ∈ ℝ)
44 metcl 22939 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑀𝑧) ∈ ℝ)
4532, 41, 34, 44syl3anc 1368 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑧) ∈ ℝ)
4643, 45readdcld 10659 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) ∈ ℝ)
47 mettri2 22948 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)))
4832, 41, 33, 34, 47syl13anc 1369 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)))
4928adantr 484 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℝ)
50 simplrr 777 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑋 = (𝑦(ball‘𝑀)𝑟))
5133, 50eleqtrd 2892 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑥 ∈ (𝑦(ball‘𝑀)𝑟))
52 metxmet 22941 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
5332, 52syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑀 ∈ (∞Met‘𝑋))
54 rpxr 12386 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
5554ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → 𝑟 ∈ ℝ*)
5655ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℝ*)
57 elbl2 22997 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦𝑋𝑥𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟))
5853, 56, 41, 33, 57syl22anc 837 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟))
5951, 58mpbid 235 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑥) < 𝑟)
6034, 50eleqtrd 2892 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑧 ∈ (𝑦(ball‘𝑀)𝑟))
61 elbl2 22997 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦𝑋𝑧𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟))
6253, 56, 41, 34, 61syl22anc 837 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟))
6360, 62mpbid 235 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑧) < 𝑟)
6443, 45, 49, 49, 59, 63lt2addd 11252 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (𝑟 + 𝑟))
6549recnd 10658 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℂ)
66652timesd 11868 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (2 · 𝑟) = (𝑟 + 𝑟))
6764, 66breqtrrd 5058 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (2 · 𝑟))
6836, 46, 39, 48, 67lelttrd 10787 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) < (2 · 𝑟))
6936, 39, 68ltled 10777 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ (2 · 𝑟))
70 elicc2 12790 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (2 · 𝑟) ∈ ℝ) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟))))
712, 39, 70sylancr 590 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟))))
7236, 38, 69, 71mpbir3and 1339 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)))
7372ralrimivva 3156 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∀𝑥𝑋𝑧𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)))
74 ffnov 7257 . . . . . . . . . . 11 (𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑥𝑋𝑧𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟))))
7531, 73, 74sylanbrc 586 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)))
76 oveq2 7143 . . . . . . . . . . . 12 (𝑥 = (2 · 𝑟) → (0[,]𝑥) = (0[,](2 · 𝑟)))
7776feq3d 6474 . . . . . . . . . . 11 (𝑥 = (2 · 𝑟) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))))
7877rspcev 3571 . . . . . . . . . 10 (((2 · 𝑟) ∈ ℝ ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
7930, 75, 78syl2anc 587 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
8079expr 460 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑟 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8180rexlimdvva 3253 . . . . . . 7 (𝑀 ∈ (Met‘𝑋) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
821, 81syl 17 . . . . . 6 (𝑀 ∈ (Bnd‘𝑋) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8382adantr 484 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8425, 83mpd 15 . . . 4 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
8523, 84pm2.61dane 3074 . . 3 (𝑀 ∈ (Bnd‘𝑋) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
861, 85jca 515 . 2 (𝑀 ∈ (Bnd‘𝑋) → (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
87 simpll 766 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Met‘𝑋))
88 simpllr 775 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑥 ∈ ℝ)
8987adantr 484 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀 ∈ (Met‘𝑋))
90 simpr 488 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑦𝑋)
91 met0 22950 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) = 0)
9289, 90, 91syl2anc 587 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) = 0)
93 simplr 768 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
9493, 90, 90fovrnd 7300 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) ∈ (0[,]𝑥))
95 elicc2 12790 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥)))
962, 88, 95sylancr 590 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥)))
9794, 96mpbid 235 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥))
9897simp3d 1141 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) ≤ 𝑥)
9992, 98eqbrtrrd 5054 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 0 ≤ 𝑥)
10088, 99ge0p1rpd 12449 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ+)
101 fovrn 7298 . . . . . . . . . . . . . 14 ((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
1021013expa 1115 . . . . . . . . . . . . 13 (((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
103102adantlll 717 . . . . . . . . . . . 12 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
104 elicc2 12790 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
1052, 88, 104sylancr 590 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
106105adantr 484 . . . . . . . . . . . 12 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
107103, 106mpbid 235 . . . . . . . . . . 11 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))
108107simp1d 1139 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ ℝ)
10988adantr 484 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → 𝑥 ∈ ℝ)
110 peano2re 10802 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
11188, 110syl 17 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ)
112111adantr 484 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑥 + 1) ∈ ℝ)
113107simp3d 1141 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ≤ 𝑥)
114109ltp1d 11559 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → 𝑥 < (𝑥 + 1))
115108, 109, 112, 113, 114lelttrd 10787 . . . . . . . . 9 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) < (𝑥 + 1))
116115ralrimiva 3149 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ∀𝑧𝑋 (𝑦𝑀𝑧) < (𝑥 + 1))
117 rabid2 3334 . . . . . . . 8 (𝑋 = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)} ↔ ∀𝑧𝑋 (𝑦𝑀𝑧) < (𝑥 + 1))
118116, 117sylibr 237 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑋 = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
11989, 52syl 17 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀 ∈ (∞Met‘𝑋))
120111rexrd 10680 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ*)
121 blval 22993 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (𝑥 + 1) ∈ ℝ*) → (𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
122119, 90, 120, 121syl3anc 1368 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
123118, 122eqtr4d 2836 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1)))
124 oveq2 7143 . . . . . . 7 (𝑟 = (𝑥 + 1) → (𝑦(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)(𝑥 + 1)))
125124rspceeqv 3586 . . . . . 6 (((𝑥 + 1) ∈ ℝ+𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1))) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
126100, 123, 125syl2anc 587 . . . . 5 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
127126ralrimiva 3149 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
128 isbnd 35218 . . . 4 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
12987, 127, 128sylanbrc 586 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋))
130129r19.29an 3247 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋))
13186, 130impbii 212 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  wss 3881  c0 4243   class class class wbr 5030   × cxp 5517  dom cdm 5519  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  *cxr 10663   < clt 10664  cle 10665  2c2 11680  +crp 12377  [,]cicc 12729  ∞Metcxmet 20076  Metcmet 20077  ballcbl 20078  Bndcbnd 35205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-ec 8274  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-bnd 35217
This theorem is referenced by:  isbnd3b  35223  prdsbnd  35231
  Copyright terms: Public domain W3C validator