MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  entric Structured version   Visualization version   GIF version

Theorem entric 9777
Description: Trichotomy of equinumerosity and strict dominance. This theorem is equivalent to the Axiom of Choice. Theorem 8 of [Suppes] p. 242. (Contributed by NM, 4-Jan-2004.)
Assertion
Ref Expression
entric ((𝐴𝑉𝐵𝑊) → (𝐴𝐵𝐴𝐵𝐵𝐴))

Proof of Theorem entric
StepHypRef Expression
1 domtri 9776 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
21biimprd 240 . . . . 5 ((𝐴𝑉𝐵𝑊) → (¬ 𝐵𝐴𝐴𝐵))
3 brdom2 8336 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
42, 3syl6ib 243 . . . 4 ((𝐴𝑉𝐵𝑊) → (¬ 𝐵𝐴 → (𝐴𝐵𝐴𝐵)))
54con1d 142 . . 3 ((𝐴𝑉𝐵𝑊) → (¬ (𝐴𝐵𝐴𝐵) → 𝐵𝐴))
65orrd 849 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐵𝐴𝐵) ∨ 𝐵𝐴))
7 df-3or 1069 . 2 ((𝐴𝐵𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴𝐵) ∨ 𝐵𝐴))
86, 7sylibr 226 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  wo 833  w3o 1067  wcel 2050   class class class wbr 4929  cen 8303  cdom 8304  csdm 8305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-ac2 9683
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-wrecs 7750  df-recs 7812  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-card 9162  df-ac 9336
This theorem is referenced by:  entri2  9778
  Copyright terms: Public domain W3C validator