MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  entri2 Structured version   Visualization version   GIF version

Theorem entri2 10552
Description: Trichotomy of dominance and strict dominance. (Contributed by NM, 4-Jan-2004.)
Assertion
Ref Expression
entri2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵𝐵𝐴))

Proof of Theorem entri2
StepHypRef Expression
1 entric 10551 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵𝐴𝐵𝐵𝐴))
2 brdom2 8977 . . . 4 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
32orbi1i 910 . . 3 ((𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴𝐵) ∨ 𝐵𝐴))
4 df-3or 1085 . . 3 ((𝐴𝐵𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴𝐵) ∨ 𝐵𝐴))
53, 4bitr4i 278 . 2 ((𝐴𝐵𝐵𝐴) ↔ (𝐴𝐵𝐴𝐵𝐵𝐴))
61, 5sylibr 233 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  w3o 1083  wcel 2098   class class class wbr 5141  cen 8935  cdom 8936  csdm 8937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-ac2 10457
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-card 9933  df-ac 10110
This theorem is referenced by:  entri3  10553
  Copyright terms: Public domain W3C validator