Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ctbnfien | Structured version Visualization version GIF version |
Description: An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
ctbnfien | ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfinite 9410 | . . . . 5 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) | |
2 | 1 | notbii 320 | . . . 4 ⊢ (¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω) |
3 | relen 8738 | . . . . . . . . . . 11 ⊢ Rel ≈ | |
4 | 3 | brrelex1i 5643 | . . . . . . . . . 10 ⊢ (𝑋 ≈ ω → 𝑋 ∈ V) |
5 | ssdomg 8786 | . . . . . . . . . 10 ⊢ (𝑋 ∈ V → (𝐴 ⊆ 𝑋 → 𝐴 ≼ 𝑋)) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝑋 ≈ ω → (𝐴 ⊆ 𝑋 → 𝐴 ≼ 𝑋)) |
7 | domen2 8907 | . . . . . . . . 9 ⊢ (𝑋 ≈ ω → (𝐴 ≼ 𝑋 ↔ 𝐴 ≼ ω)) | |
8 | 6, 7 | sylibd 238 | . . . . . . . 8 ⊢ (𝑋 ≈ ω → (𝐴 ⊆ 𝑋 → 𝐴 ≼ ω)) |
9 | 8 | imp 407 | . . . . . . 7 ⊢ ((𝑋 ≈ ω ∧ 𝐴 ⊆ 𝑋) → 𝐴 ≼ ω) |
10 | brdom2 8770 | . . . . . . 7 ⊢ (𝐴 ≼ ω ↔ (𝐴 ≺ ω ∨ 𝐴 ≈ ω)) | |
11 | 9, 10 | sylib 217 | . . . . . 6 ⊢ ((𝑋 ≈ ω ∧ 𝐴 ⊆ 𝑋) → (𝐴 ≺ ω ∨ 𝐴 ≈ ω)) |
12 | 11 | adantlr 712 | . . . . 5 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ≺ ω ∨ 𝐴 ≈ ω)) |
13 | 12 | ord 861 | . . . 4 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴 ⊆ 𝑋) → (¬ 𝐴 ≺ ω → 𝐴 ≈ ω)) |
14 | 2, 13 | syl5bi 241 | . . 3 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴 ⊆ 𝑋) → (¬ 𝐴 ∈ Fin → 𝐴 ≈ ω)) |
15 | 14 | impr 455 | . 2 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ ω) |
16 | enen2 8905 | . . 3 ⊢ (𝑌 ≈ ω → (𝐴 ≈ 𝑌 ↔ 𝐴 ≈ ω)) | |
17 | 16 | ad2antlr 724 | . 2 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → (𝐴 ≈ 𝑌 ↔ 𝐴 ≈ ω)) |
18 | 15, 17 | mpbird 256 | 1 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 ωcom 7712 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 |
This theorem is referenced by: fiphp3d 40641 irrapx1 40650 |
Copyright terms: Public domain | W3C validator |