![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ctbnfien | Structured version Visualization version GIF version |
Description: An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
ctbnfien | ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfinite 9669 | . . . . 5 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) | |
2 | 1 | notbii 320 | . . . 4 ⊢ (¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω) |
3 | relen 8962 | . . . . . . . . . . 11 ⊢ Rel ≈ | |
4 | 3 | brrelex1i 5728 | . . . . . . . . . 10 ⊢ (𝑋 ≈ ω → 𝑋 ∈ V) |
5 | ssdomg 9014 | . . . . . . . . . 10 ⊢ (𝑋 ∈ V → (𝐴 ⊆ 𝑋 → 𝐴 ≼ 𝑋)) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝑋 ≈ ω → (𝐴 ⊆ 𝑋 → 𝐴 ≼ 𝑋)) |
7 | domen2 9138 | . . . . . . . . 9 ⊢ (𝑋 ≈ ω → (𝐴 ≼ 𝑋 ↔ 𝐴 ≼ ω)) | |
8 | 6, 7 | sylibd 238 | . . . . . . . 8 ⊢ (𝑋 ≈ ω → (𝐴 ⊆ 𝑋 → 𝐴 ≼ ω)) |
9 | 8 | imp 406 | . . . . . . 7 ⊢ ((𝑋 ≈ ω ∧ 𝐴 ⊆ 𝑋) → 𝐴 ≼ ω) |
10 | brdom2 8996 | . . . . . . 7 ⊢ (𝐴 ≼ ω ↔ (𝐴 ≺ ω ∨ 𝐴 ≈ ω)) | |
11 | 9, 10 | sylib 217 | . . . . . 6 ⊢ ((𝑋 ≈ ω ∧ 𝐴 ⊆ 𝑋) → (𝐴 ≺ ω ∨ 𝐴 ≈ ω)) |
12 | 11 | adantlr 714 | . . . . 5 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ≺ ω ∨ 𝐴 ≈ ω)) |
13 | 12 | ord 863 | . . . 4 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴 ⊆ 𝑋) → (¬ 𝐴 ≺ ω → 𝐴 ≈ ω)) |
14 | 2, 13 | biimtrid 241 | . . 3 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴 ⊆ 𝑋) → (¬ 𝐴 ∈ Fin → 𝐴 ≈ ω)) |
15 | 14 | impr 454 | . 2 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ ω) |
16 | enen2 9136 | . . 3 ⊢ (𝑌 ≈ ω → (𝐴 ≈ 𝑌 ↔ 𝐴 ≈ ω)) | |
17 | 16 | ad2antlr 726 | . 2 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → (𝐴 ≈ 𝑌 ↔ 𝐴 ≈ ω)) |
18 | 15, 17 | mpbird 257 | 1 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 ∈ wcel 2099 Vcvv 3469 ⊆ wss 3944 class class class wbr 5142 ωcom 7864 ≈ cen 8954 ≼ cdom 8955 ≺ csdm 8956 Fincfn 8957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 |
This theorem is referenced by: fiphp3d 42211 irrapx1 42220 |
Copyright terms: Public domain | W3C validator |