Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ctbnfien Structured version   Visualization version   GIF version

Theorem ctbnfien 39422
Description: An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
ctbnfien (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴𝑌)

Proof of Theorem ctbnfien
StepHypRef Expression
1 isfinite 9117 . . . . 5 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
21notbii 322 . . . 4 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω)
3 relen 8516 . . . . . . . . . . 11 Rel ≈
43brrelex1i 5610 . . . . . . . . . 10 (𝑋 ≈ ω → 𝑋 ∈ V)
5 ssdomg 8557 . . . . . . . . . 10 (𝑋 ∈ V → (𝐴𝑋𝐴𝑋))
64, 5syl 17 . . . . . . . . 9 (𝑋 ≈ ω → (𝐴𝑋𝐴𝑋))
7 domen2 8662 . . . . . . . . 9 (𝑋 ≈ ω → (𝐴𝑋𝐴 ≼ ω))
86, 7sylibd 241 . . . . . . . 8 (𝑋 ≈ ω → (𝐴𝑋𝐴 ≼ ω))
98imp 409 . . . . . . 7 ((𝑋 ≈ ω ∧ 𝐴𝑋) → 𝐴 ≼ ω)
10 brdom2 8541 . . . . . . 7 (𝐴 ≼ ω ↔ (𝐴 ≺ ω ∨ 𝐴 ≈ ω))
119, 10sylib 220 . . . . . 6 ((𝑋 ≈ ω ∧ 𝐴𝑋) → (𝐴 ≺ ω ∨ 𝐴 ≈ ω))
1211adantlr 713 . . . . 5 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴𝑋) → (𝐴 ≺ ω ∨ 𝐴 ≈ ω))
1312ord 860 . . . 4 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴𝑋) → (¬ 𝐴 ≺ ω → 𝐴 ≈ ω))
142, 13syl5bi 244 . . 3 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴𝑋) → (¬ 𝐴 ∈ Fin → 𝐴 ≈ ω))
1514impr 457 . 2 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ ω)
16 enen2 8660 . . 3 (𝑌 ≈ ω → (𝐴𝑌𝐴 ≈ ω))
1716ad2antlr 725 . 2 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin)) → (𝐴𝑌𝐴 ≈ ω))
1815, 17mpbird 259 1 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  wcel 2114  Vcvv 3496  wss 3938   class class class wbr 5068  ωcom 7582  cen 8508  cdom 8509  csdm 8510  Fincfn 8511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515
This theorem is referenced by:  fiphp3d  39423  irrapx1  39432
  Copyright terms: Public domain W3C validator