![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ctbnfien | Structured version Visualization version GIF version |
Description: An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
ctbnfien | ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfinite 9649 | . . . . 5 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) | |
2 | 1 | notbii 319 | . . . 4 ⊢ (¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω) |
3 | relen 8946 | . . . . . . . . . . 11 ⊢ Rel ≈ | |
4 | 3 | brrelex1i 5731 | . . . . . . . . . 10 ⊢ (𝑋 ≈ ω → 𝑋 ∈ V) |
5 | ssdomg 8998 | . . . . . . . . . 10 ⊢ (𝑋 ∈ V → (𝐴 ⊆ 𝑋 → 𝐴 ≼ 𝑋)) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝑋 ≈ ω → (𝐴 ⊆ 𝑋 → 𝐴 ≼ 𝑋)) |
7 | domen2 9122 | . . . . . . . . 9 ⊢ (𝑋 ≈ ω → (𝐴 ≼ 𝑋 ↔ 𝐴 ≼ ω)) | |
8 | 6, 7 | sylibd 238 | . . . . . . . 8 ⊢ (𝑋 ≈ ω → (𝐴 ⊆ 𝑋 → 𝐴 ≼ ω)) |
9 | 8 | imp 405 | . . . . . . 7 ⊢ ((𝑋 ≈ ω ∧ 𝐴 ⊆ 𝑋) → 𝐴 ≼ ω) |
10 | brdom2 8980 | . . . . . . 7 ⊢ (𝐴 ≼ ω ↔ (𝐴 ≺ ω ∨ 𝐴 ≈ ω)) | |
11 | 9, 10 | sylib 217 | . . . . . 6 ⊢ ((𝑋 ≈ ω ∧ 𝐴 ⊆ 𝑋) → (𝐴 ≺ ω ∨ 𝐴 ≈ ω)) |
12 | 11 | adantlr 711 | . . . . 5 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴 ⊆ 𝑋) → (𝐴 ≺ ω ∨ 𝐴 ≈ ω)) |
13 | 12 | ord 860 | . . . 4 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴 ⊆ 𝑋) → (¬ 𝐴 ≺ ω → 𝐴 ≈ ω)) |
14 | 2, 13 | biimtrid 241 | . . 3 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴 ⊆ 𝑋) → (¬ 𝐴 ∈ Fin → 𝐴 ≈ ω)) |
15 | 14 | impr 453 | . 2 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ ω) |
16 | enen2 9120 | . . 3 ⊢ (𝑌 ≈ ω → (𝐴 ≈ 𝑌 ↔ 𝐴 ≈ ω)) | |
17 | 16 | ad2antlr 723 | . 2 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → (𝐴 ≈ 𝑌 ↔ 𝐴 ≈ ω)) |
18 | 15, 17 | mpbird 256 | 1 ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 843 ∈ wcel 2104 Vcvv 3472 ⊆ wss 3947 class class class wbr 5147 ωcom 7857 ≈ cen 8938 ≼ cdom 8939 ≺ csdm 8940 Fincfn 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 |
This theorem is referenced by: fiphp3d 41859 irrapx1 41868 |
Copyright terms: Public domain | W3C validator |