Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ctbnfien Structured version   Visualization version   GIF version

Theorem ctbnfien 39395
Description: An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
ctbnfien (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴𝑌)

Proof of Theorem ctbnfien
StepHypRef Expression
1 isfinite 9107 . . . . 5 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
21notbii 322 . . . 4 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω)
3 relen 8506 . . . . . . . . . . 11 Rel ≈
43brrelex1i 5601 . . . . . . . . . 10 (𝑋 ≈ ω → 𝑋 ∈ V)
5 ssdomg 8547 . . . . . . . . . 10 (𝑋 ∈ V → (𝐴𝑋𝐴𝑋))
64, 5syl 17 . . . . . . . . 9 (𝑋 ≈ ω → (𝐴𝑋𝐴𝑋))
7 domen2 8652 . . . . . . . . 9 (𝑋 ≈ ω → (𝐴𝑋𝐴 ≼ ω))
86, 7sylibd 241 . . . . . . . 8 (𝑋 ≈ ω → (𝐴𝑋𝐴 ≼ ω))
98imp 409 . . . . . . 7 ((𝑋 ≈ ω ∧ 𝐴𝑋) → 𝐴 ≼ ω)
10 brdom2 8531 . . . . . . 7 (𝐴 ≼ ω ↔ (𝐴 ≺ ω ∨ 𝐴 ≈ ω))
119, 10sylib 220 . . . . . 6 ((𝑋 ≈ ω ∧ 𝐴𝑋) → (𝐴 ≺ ω ∨ 𝐴 ≈ ω))
1211adantlr 713 . . . . 5 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴𝑋) → (𝐴 ≺ ω ∨ 𝐴 ≈ ω))
1312ord 860 . . . 4 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴𝑋) → (¬ 𝐴 ≺ ω → 𝐴 ≈ ω))
142, 13syl5bi 244 . . 3 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ 𝐴𝑋) → (¬ 𝐴 ∈ Fin → 𝐴 ≈ ω))
1514impr 457 . 2 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ ω)
16 enen2 8650 . . 3 (𝑌 ≈ ω → (𝐴𝑌𝐴 ≈ ω))
1716ad2antlr 725 . 2 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin)) → (𝐴𝑌𝐴 ≈ ω))
1815, 17mpbird 259 1 (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  wcel 2107  Vcvv 3493  wss 3934   class class class wbr 5057  ωcom 7572  cen 8498  cdom 8499  csdm 8500  Fincfn 8501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505
This theorem is referenced by:  fiphp3d  39396  irrapx1  39405
  Copyright terms: Public domain W3C validator