| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnsym | Structured version Visualization version GIF version | ||
| Description: Theorem 22(i) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| domnsym | ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2 8899 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
| 2 | sdomnsym 9010 | . . 3 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
| 3 | sdomnen 8898 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴) | |
| 4 | ensym 8920 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 5 | 3, 4 | nsyl3 138 | . . 3 ⊢ (𝐴 ≈ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
| 6 | 2, 5 | jaoi 857 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 class class class wbr 5086 ≈ cen 8861 ≼ cdom 8862 ≺ csdm 8863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 |
| This theorem is referenced by: sdomdomtr 9018 domsdomtr 9020 sdomdif 9033 onsdominel 9034 fofinf1o 9211 carddom2 9865 fidomtri 9881 fidomtri2 9882 infxpenlem 9899 alephordi 9960 infdif 10094 infdif2 10095 cfslbn 10153 cfslb2n 10154 fincssdom 10209 fin45 10278 domtriom 10329 alephval2 10458 alephreg 10468 pwcfsdom 10469 cfpwsdom 10470 pwfseqlem3 10546 gchpwdom 10556 gchaleph 10557 hargch 10559 gchhar 10565 winainflem 10579 rankcf 10663 tskcard 10667 vdwlem12 16899 odinf 19470 rectbntr0 24743 erdszelem10 35236 finminlem 36352 fimgmcyc 42567 fphpd 42849 |
| Copyright terms: Public domain | W3C validator |