![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domnsym | Structured version Visualization version GIF version |
Description: Theorem 22(i) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) |
Ref | Expression |
---|---|
domnsym | ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdom2 8143 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
2 | sdomnsym 8245 | . . 3 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
3 | sdomnen 8142 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴) | |
4 | ensym 8162 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
5 | 3, 4 | nsyl3 135 | . . 3 ⊢ (𝐴 ≈ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
6 | 2, 5 | jaoi 846 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
7 | 1, 6 | sylbi 207 | 1 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 836 class class class wbr 4787 ≈ cen 8110 ≼ cdom 8111 ≺ csdm 8112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 |
This theorem is referenced by: sdom0 8252 sdomdomtr 8253 domsdomtr 8255 sdomdif 8268 onsdominel 8269 nndomo 8314 sdom1 8320 fofinf1o 8401 carddom2 9007 fidomtri 9023 fidomtri2 9024 infxpenlem 9040 alephordi 9101 infdif 9237 infdif2 9238 cfslbn 9295 cfslb2n 9296 fincssdom 9351 fin45 9420 domtriom 9471 alephval2 9600 alephreg 9610 pwcfsdom 9611 cfpwsdom 9612 pwfseqlem3 9688 gchpwdom 9698 gchaleph 9699 hargch 9701 gchhar 9707 winainflem 9721 rankcf 9805 tskcard 9809 vdwlem12 15903 odinf 18187 rectbntr0 22855 erdszelem10 31520 finminlem 32649 fphpd 37904 |
Copyright terms: Public domain | W3C validator |