| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnsym | Structured version Visualization version GIF version | ||
| Description: Theorem 22(i) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| domnsym | ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2 8956 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
| 2 | sdomnsym 9072 | . . 3 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
| 3 | sdomnen 8955 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴) | |
| 4 | ensym 8977 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 5 | 3, 4 | nsyl3 138 | . . 3 ⊢ (𝐴 ≈ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
| 6 | 2, 5 | jaoi 857 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 class class class wbr 5110 ≈ cen 8918 ≼ cdom 8919 ≺ csdm 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 |
| This theorem is referenced by: sdomdomtr 9080 domsdomtr 9082 sdomdif 9095 onsdominel 9096 sdom1OLD 9197 fofinf1o 9290 carddom2 9937 fidomtri 9953 fidomtri2 9954 infxpenlem 9973 alephordi 10034 infdif 10168 infdif2 10169 cfslbn 10227 cfslb2n 10228 fincssdom 10283 fin45 10352 domtriom 10403 alephval2 10532 alephreg 10542 pwcfsdom 10543 cfpwsdom 10544 pwfseqlem3 10620 gchpwdom 10630 gchaleph 10631 hargch 10633 gchhar 10639 winainflem 10653 rankcf 10737 tskcard 10741 vdwlem12 16970 odinf 19500 rectbntr0 24728 erdszelem10 35194 finminlem 36313 fimgmcyc 42529 fphpd 42811 |
| Copyright terms: Public domain | W3C validator |