| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnsym | Structured version Visualization version GIF version | ||
| Description: Theorem 22(i) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) |
| Ref | Expression |
|---|---|
| domnsym | ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2 8930 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
| 2 | sdomnsym 9043 | . . 3 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
| 3 | sdomnen 8929 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴) | |
| 4 | ensym 8951 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 5 | 3, 4 | nsyl3 138 | . . 3 ⊢ (𝐴 ≈ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
| 6 | 2, 5 | jaoi 857 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 class class class wbr 5102 ≈ cen 8892 ≼ cdom 8893 ≺ csdm 8894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 |
| This theorem is referenced by: sdomdomtr 9051 domsdomtr 9053 sdomdif 9066 onsdominel 9067 fofinf1o 9259 carddom2 9906 fidomtri 9922 fidomtri2 9923 infxpenlem 9942 alephordi 10003 infdif 10137 infdif2 10138 cfslbn 10196 cfslb2n 10197 fincssdom 10252 fin45 10321 domtriom 10372 alephval2 10501 alephreg 10511 pwcfsdom 10512 cfpwsdom 10513 pwfseqlem3 10589 gchpwdom 10599 gchaleph 10600 hargch 10602 gchhar 10608 winainflem 10622 rankcf 10706 tskcard 10710 vdwlem12 16939 odinf 19469 rectbntr0 24697 erdszelem10 35160 finminlem 36279 fimgmcyc 42495 fphpd 42777 |
| Copyright terms: Public domain | W3C validator |