Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domnsym | Structured version Visualization version GIF version |
Description: Theorem 22(i) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) |
Ref | Expression |
---|---|
domnsym | ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdom2 8770 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
2 | sdomnsym 8885 | . . 3 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
3 | sdomnen 8769 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴) | |
4 | ensym 8789 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
5 | 3, 4 | nsyl3 138 | . . 3 ⊢ (𝐴 ≈ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
6 | 2, 5 | jaoi 854 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 844 class class class wbr 5074 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 |
This theorem is referenced by: sdom0OLD 8896 sdomdomtr 8897 domsdomtr 8899 sdomdif 8912 onsdominel 8913 nndomogOLD 9009 sdom1 9022 fofinf1o 9094 carddom2 9735 fidomtri 9751 fidomtri2 9752 infxpenlem 9769 alephordi 9830 infdif 9965 infdif2 9966 cfslbn 10023 cfslb2n 10024 fincssdom 10079 fin45 10148 domtriom 10199 alephval2 10328 alephreg 10338 pwcfsdom 10339 cfpwsdom 10340 pwfseqlem3 10416 gchpwdom 10426 gchaleph 10427 hargch 10429 gchhar 10435 winainflem 10449 rankcf 10533 tskcard 10537 vdwlem12 16693 odinf 19170 rectbntr0 23995 erdszelem10 33162 finminlem 34507 fphpd 40638 |
Copyright terms: Public domain | W3C validator |