| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnsymfi | Structured version Visualization version GIF version | ||
| Description: If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym 9118). (Contributed by BTernaryTau, 22-Nov-2024.) |
| Ref | Expression |
|---|---|
| domnsymfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2 9001 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
| 2 | sdomnen 9000 | . . . . 5 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) | |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵) → ¬ 𝐴 ≈ 𝐵) |
| 4 | sdomdom 8999 | . . . . . . 7 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
| 5 | sdomdom 8999 | . . . . . . . 8 ⊢ (𝐵 ≺ 𝐴 → 𝐵 ≼ 𝐴) | |
| 6 | sbthfi 9218 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐵 ≈ 𝐴) | |
| 7 | ensymfib 9203 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | |
| 8 | 7 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
| 9 | 6, 8 | mpbird 257 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≈ 𝐵) |
| 10 | 5, 9 | syl3an2 1164 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≺ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≈ 𝐵) |
| 11 | 4, 10 | syl3an3 1165 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≺ 𝐴 ∧ 𝐴 ≺ 𝐵) → 𝐴 ≈ 𝐵) |
| 12 | 11 | 3com23 1126 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≈ 𝐵) |
| 13 | 12 | 3expa 1118 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵) ∧ 𝐵 ≺ 𝐴) → 𝐴 ≈ 𝐵) |
| 14 | 3, 13 | mtand 815 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
| 15 | sdomnen 9000 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴) | |
| 16 | 7 | biimpa 476 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐵 ≈ 𝐴) |
| 17 | 15, 16 | nsyl3 138 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
| 18 | 14, 17 | jaodan 959 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) → ¬ 𝐵 ≺ 𝐴) |
| 19 | 1, 18 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5124 ≈ cen 8961 ≼ cdom 8962 ≺ csdm 8963 Fincfn 8964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 |
| This theorem is referenced by: sdomdomtrfi 9220 domsdomtrfi 9221 nndomog 9232 onomeneq 9242 |
| Copyright terms: Public domain | W3C validator |