| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domnsymfi | Structured version Visualization version GIF version | ||
| Description: If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym 9073). (Contributed by BTernaryTau, 22-Nov-2024.) |
| Ref | Expression |
|---|---|
| domnsymfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2 8956 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
| 2 | sdomnen 8955 | . . . . 5 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) | |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵) → ¬ 𝐴 ≈ 𝐵) |
| 4 | sdomdom 8954 | . . . . . . 7 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
| 5 | sdomdom 8954 | . . . . . . . 8 ⊢ (𝐵 ≺ 𝐴 → 𝐵 ≼ 𝐴) | |
| 6 | sbthfi 9169 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐵 ≈ 𝐴) | |
| 7 | ensymfib 9154 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | |
| 8 | 7 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
| 9 | 6, 8 | mpbird 257 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≈ 𝐵) |
| 10 | 5, 9 | syl3an2 1164 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≺ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≈ 𝐵) |
| 11 | 4, 10 | syl3an3 1165 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≺ 𝐴 ∧ 𝐴 ≺ 𝐵) → 𝐴 ≈ 𝐵) |
| 12 | 11 | 3com23 1126 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≈ 𝐵) |
| 13 | 12 | 3expa 1118 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵) ∧ 𝐵 ≺ 𝐴) → 𝐴 ≈ 𝐵) |
| 14 | 3, 13 | mtand 815 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
| 15 | sdomnen 8955 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴) | |
| 16 | 7 | biimpa 476 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐵 ≈ 𝐴) |
| 17 | 15, 16 | nsyl3 138 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
| 18 | 14, 17 | jaodan 959 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) → ¬ 𝐵 ≺ 𝐴) |
| 19 | 1, 18 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5110 ≈ cen 8918 ≼ cdom 8919 ≺ csdm 8920 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 |
| This theorem is referenced by: sdomdomtrfi 9171 domsdomtrfi 9172 nndomog 9183 onomeneq 9184 |
| Copyright terms: Public domain | W3C validator |