![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domnsymfi | Structured version Visualization version GIF version |
Description: If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym 9101). (Contributed by BTernaryTau, 22-Nov-2024.) |
Ref | Expression |
---|---|
domnsymfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdom2 8980 | . 2 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
2 | sdomnen 8979 | . . . . 5 ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) | |
3 | 2 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵) → ¬ 𝐴 ≈ 𝐵) |
4 | sdomdom 8978 | . . . . . . 7 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
5 | sdomdom 8978 | . . . . . . . 8 ⊢ (𝐵 ≺ 𝐴 → 𝐵 ≼ 𝐴) | |
6 | sbthfi 9204 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐵 ≈ 𝐴) | |
7 | ensymfib 9189 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | |
8 | 7 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
9 | 6, 8 | mpbird 256 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≈ 𝐵) |
10 | 5, 9 | syl3an2 1164 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≺ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐴 ≈ 𝐵) |
11 | 4, 10 | syl3an3 1165 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≺ 𝐴 ∧ 𝐴 ≺ 𝐵) → 𝐴 ≈ 𝐵) |
12 | 11 | 3com23 1126 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≈ 𝐵) |
13 | 12 | 3expa 1118 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵) ∧ 𝐵 ≺ 𝐴) → 𝐴 ≈ 𝐵) |
14 | 3, 13 | mtand 814 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
15 | sdomnen 8979 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴) | |
16 | 7 | biimpa 477 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐵 ≈ 𝐴) |
17 | 15, 16 | nsyl3 138 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
18 | 14, 17 | jaodan 956 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) → ¬ 𝐵 ≺ 𝐴) |
19 | 1, 18 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 ∈ wcel 2106 class class class wbr 5148 ≈ cen 8938 ≼ cdom 8939 ≺ csdm 8940 Fincfn 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7858 df-1o 8468 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 |
This theorem is referenced by: sdomdomtrfi 9206 domsdomtrfi 9207 nndomog 9218 onomeneq 9230 |
Copyright terms: Public domain | W3C validator |