MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnsymfi Structured version   Visualization version   GIF version

Theorem domnsymfi 9266
Description: If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym 9165). (Contributed by BTernaryTau, 22-Nov-2024.)
Assertion
Ref Expression
domnsymfi ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴)

Proof of Theorem domnsymfi
StepHypRef Expression
1 brdom2 9042 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
2 sdomnen 9041 . . . . 5 (𝐴𝐵 → ¬ 𝐴𝐵)
32adantl 481 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐴𝐵)
4 sdomdom 9040 . . . . . . 7 (𝐴𝐵𝐴𝐵)
5 sdomdom 9040 . . . . . . . 8 (𝐵𝐴𝐵𝐴)
6 sbthfi 9265 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵) → 𝐵𝐴)
7 ensymfib 9250 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))
873ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵) → (𝐴𝐵𝐵𝐴))
96, 8mpbird 257 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵) → 𝐴𝐵)
105, 9syl3an2 1164 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵) → 𝐴𝐵)
114, 10syl3an3 1165 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵) → 𝐴𝐵)
12113com23 1126 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
13123expa 1118 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴𝐵) ∧ 𝐵𝐴) → 𝐴𝐵)
143, 13mtand 815 . . 3 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
15 sdomnen 9041 . . . 4 (𝐵𝐴 → ¬ 𝐵𝐴)
167biimpa 476 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → 𝐵𝐴)
1715, 16nsyl3 138 . . 3 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
1814, 17jaodan 958 . 2 ((𝐴 ∈ Fin ∧ (𝐴𝐵𝐴𝐵)) → ¬ 𝐵𝐴)
191, 18sylan2b 593 1 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087  wcel 2108   class class class wbr 5166  cen 9000  cdom 9001  csdm 9002  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007
This theorem is referenced by:  sdomdomtrfi  9267  domsdomtrfi  9268  nndomog  9279  onomeneq  9291
  Copyright terms: Public domain W3C validator