MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnsymfi Structured version   Visualization version   GIF version

Theorem domnsymfi 9205
Description: If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym 9101). (Contributed by BTernaryTau, 22-Nov-2024.)
Assertion
Ref Expression
domnsymfi ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴)

Proof of Theorem domnsymfi
StepHypRef Expression
1 brdom2 8980 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
2 sdomnen 8979 . . . . 5 (𝐴𝐵 → ¬ 𝐴𝐵)
32adantl 482 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐴𝐵)
4 sdomdom 8978 . . . . . . 7 (𝐴𝐵𝐴𝐵)
5 sdomdom 8978 . . . . . . . 8 (𝐵𝐴𝐵𝐴)
6 sbthfi 9204 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵) → 𝐵𝐴)
7 ensymfib 9189 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))
873ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵) → (𝐴𝐵𝐵𝐴))
96, 8mpbird 256 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵) → 𝐴𝐵)
105, 9syl3an2 1164 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵) → 𝐴𝐵)
114, 10syl3an3 1165 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴𝐴𝐵) → 𝐴𝐵)
12113com23 1126 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
13123expa 1118 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴𝐵) ∧ 𝐵𝐴) → 𝐴𝐵)
143, 13mtand 814 . . 3 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
15 sdomnen 8979 . . . 4 (𝐵𝐴 → ¬ 𝐵𝐴)
167biimpa 477 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → 𝐵𝐴)
1715, 16nsyl3 138 . . 3 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
1814, 17jaodan 956 . 2 ((𝐴 ∈ Fin ∧ (𝐴𝐵𝐴𝐵)) → ¬ 𝐵𝐴)
191, 18sylan2b 594 1 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087  wcel 2106   class class class wbr 5148  cen 8938  cdom 8939  csdm 8940  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7858  df-1o 8468  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945
This theorem is referenced by:  sdomdomtrfi  9206  domsdomtrfi  9207  nndomog  9218  onomeneq  9230
  Copyright terms: Public domain W3C validator