MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilen Structured version   Visualization version   GIF version

Theorem ufilen 23824
Description: Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
Assertion
Ref Expression
ufilen (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋)
Distinct variable group:   𝑥,𝑓,𝑋

Proof of Theorem ufilen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reldom 8927 . . . . . 6 Rel ≼
21brrelex2i 5698 . . . . 5 (ω ≼ 𝑋𝑋 ∈ V)
3 numth3 10430 . . . . 5 (𝑋 ∈ V → 𝑋 ∈ dom card)
42, 3syl 17 . . . 4 (ω ≼ 𝑋𝑋 ∈ dom card)
5 csdfil 23788 . . . 4 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋))
64, 5mpancom 688 . . 3 (ω ≼ 𝑋 → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋))
7 filssufil 23806 . . 3 ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓)
86, 7syl 17 . 2 (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓)
9 elfvex 6899 . . . . . . 7 (𝑓 ∈ (UFil‘𝑋) → 𝑋 ∈ V)
109ad2antlr 727 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑋 ∈ V)
11 ufilfil 23798 . . . . . . . 8 (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (Fil‘𝑋))
12 filelss 23746 . . . . . . . 8 ((𝑓 ∈ (Fil‘𝑋) ∧ 𝑥𝑓) → 𝑥𝑋)
1311, 12sylan 580 . . . . . . 7 ((𝑓 ∈ (UFil‘𝑋) ∧ 𝑥𝑓) → 𝑥𝑋)
1413adantll 714 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑥𝑋)
15 ssdomg 8974 . . . . . 6 (𝑋 ∈ V → (𝑥𝑋𝑥𝑋))
1610, 14, 15sylc 65 . . . . 5 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑥𝑋)
17 filfbas 23742 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑋) → 𝑓 ∈ (fBas‘𝑋))
1811, 17syl 17 . . . . . . . 8 (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (fBas‘𝑋))
1918adantl 481 . . . . . . 7 ((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) → 𝑓 ∈ (fBas‘𝑋))
20 fbncp 23733 . . . . . . 7 ((𝑓 ∈ (fBas‘𝑋) ∧ 𝑥𝑓) → ¬ (𝑋𝑥) ∈ 𝑓)
2119, 20sylan 580 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ¬ (𝑋𝑥) ∈ 𝑓)
22 difeq2 4086 . . . . . . . . . . . . 13 (𝑦 = (𝑋𝑥) → (𝑋𝑦) = (𝑋 ∖ (𝑋𝑥)))
2322breq1d 5120 . . . . . . . . . . . 12 (𝑦 = (𝑋𝑥) → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) ≺ 𝑋))
24 difss 4102 . . . . . . . . . . . . . 14 (𝑋𝑥) ⊆ 𝑋
25 elpw2g 5291 . . . . . . . . . . . . . 14 (𝑋 ∈ V → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
2624, 25mpbiri 258 . . . . . . . . . . . . 13 (𝑋 ∈ V → (𝑋𝑥) ∈ 𝒫 𝑋)
27263ad2ant1 1133 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋𝑥) ∈ 𝒫 𝑋)
28 simp2 1137 . . . . . . . . . . . . . 14 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → 𝑥𝑋)
29 dfss4 4235 . . . . . . . . . . . . . 14 (𝑥𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) = 𝑥)
3028, 29sylib 218 . . . . . . . . . . . . 13 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋 ∖ (𝑋𝑥)) = 𝑥)
31 simp3 1138 . . . . . . . . . . . . 13 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → 𝑥𝑋)
3230, 31eqbrtrd 5132 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋 ∖ (𝑋𝑥)) ≺ 𝑋)
3323, 27, 32elrabd 3664 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋𝑥) ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋})
34 ssel 3943 . . . . . . . . . . 11 ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ((𝑋𝑥) ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} → (𝑋𝑥) ∈ 𝑓))
3533, 34syl5com 31 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → (𝑋𝑥) ∈ 𝑓))
36353expa 1118 . . . . . . . . 9 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ 𝑥𝑋) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → (𝑋𝑥) ∈ 𝑓))
3736impancom 451 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓) → (𝑥𝑋 → (𝑋𝑥) ∈ 𝑓))
3837con3d 152 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓) → (¬ (𝑋𝑥) ∈ 𝑓 → ¬ 𝑥𝑋))
3938impancom 451 . . . . . 6 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ ¬ (𝑋𝑥) ∈ 𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ¬ 𝑥𝑋))
4010, 14, 21, 39syl21anc 837 . . . . 5 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ¬ 𝑥𝑋))
41 bren2 8957 . . . . . 6 (𝑥𝑋 ↔ (𝑥𝑋 ∧ ¬ 𝑥𝑋))
4241simplbi2 500 . . . . 5 (𝑥𝑋 → (¬ 𝑥𝑋𝑥𝑋))
4316, 40, 42sylsyld 61 . . . 4 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓𝑥𝑋))
4443ralrimdva 3134 . . 3 ((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ∀𝑥𝑓 𝑥𝑋))
4544reximdva 3147 . 2 (ω ≼ 𝑋 → (∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋))
468, 45mpd 15 1 (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  𝒫 cpw 4566   class class class wbr 5110  dom cdm 5641  cfv 6514  ωcom 7845  cen 8918  cdom 8919  csdm 8920  cardccrd 9895  fBascfbas 21259  Filcfil 23739  UFilcufil 23793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-rpss 7702  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-oi 9470  df-dju 9861  df-card 9899  df-ac 10076  df-fbas 21268  df-fg 21269  df-fil 23740  df-ufil 23795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator