MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilen Structured version   Visualization version   GIF version

Theorem ufilen 23938
Description: Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
Assertion
Ref Expression
ufilen (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋)
Distinct variable group:   𝑥,𝑓,𝑋

Proof of Theorem ufilen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reldom 8991 . . . . . 6 Rel ≼
21brrelex2i 5742 . . . . 5 (ω ≼ 𝑋𝑋 ∈ V)
3 numth3 10510 . . . . 5 (𝑋 ∈ V → 𝑋 ∈ dom card)
42, 3syl 17 . . . 4 (ω ≼ 𝑋𝑋 ∈ dom card)
5 csdfil 23902 . . . 4 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋))
64, 5mpancom 688 . . 3 (ω ≼ 𝑋 → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋))
7 filssufil 23920 . . 3 ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓)
86, 7syl 17 . 2 (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓)
9 elfvex 6944 . . . . . . 7 (𝑓 ∈ (UFil‘𝑋) → 𝑋 ∈ V)
109ad2antlr 727 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑋 ∈ V)
11 ufilfil 23912 . . . . . . . 8 (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (Fil‘𝑋))
12 filelss 23860 . . . . . . . 8 ((𝑓 ∈ (Fil‘𝑋) ∧ 𝑥𝑓) → 𝑥𝑋)
1311, 12sylan 580 . . . . . . 7 ((𝑓 ∈ (UFil‘𝑋) ∧ 𝑥𝑓) → 𝑥𝑋)
1413adantll 714 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑥𝑋)
15 ssdomg 9040 . . . . . 6 (𝑋 ∈ V → (𝑥𝑋𝑥𝑋))
1610, 14, 15sylc 65 . . . . 5 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑥𝑋)
17 filfbas 23856 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑋) → 𝑓 ∈ (fBas‘𝑋))
1811, 17syl 17 . . . . . . . 8 (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (fBas‘𝑋))
1918adantl 481 . . . . . . 7 ((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) → 𝑓 ∈ (fBas‘𝑋))
20 fbncp 23847 . . . . . . 7 ((𝑓 ∈ (fBas‘𝑋) ∧ 𝑥𝑓) → ¬ (𝑋𝑥) ∈ 𝑓)
2119, 20sylan 580 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ¬ (𝑋𝑥) ∈ 𝑓)
22 difeq2 4120 . . . . . . . . . . . . 13 (𝑦 = (𝑋𝑥) → (𝑋𝑦) = (𝑋 ∖ (𝑋𝑥)))
2322breq1d 5153 . . . . . . . . . . . 12 (𝑦 = (𝑋𝑥) → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) ≺ 𝑋))
24 difss 4136 . . . . . . . . . . . . . 14 (𝑋𝑥) ⊆ 𝑋
25 elpw2g 5333 . . . . . . . . . . . . . 14 (𝑋 ∈ V → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
2624, 25mpbiri 258 . . . . . . . . . . . . 13 (𝑋 ∈ V → (𝑋𝑥) ∈ 𝒫 𝑋)
27263ad2ant1 1134 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋𝑥) ∈ 𝒫 𝑋)
28 simp2 1138 . . . . . . . . . . . . . 14 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → 𝑥𝑋)
29 dfss4 4269 . . . . . . . . . . . . . 14 (𝑥𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) = 𝑥)
3028, 29sylib 218 . . . . . . . . . . . . 13 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋 ∖ (𝑋𝑥)) = 𝑥)
31 simp3 1139 . . . . . . . . . . . . 13 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → 𝑥𝑋)
3230, 31eqbrtrd 5165 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋 ∖ (𝑋𝑥)) ≺ 𝑋)
3323, 27, 32elrabd 3694 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋𝑥) ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋})
34 ssel 3977 . . . . . . . . . . 11 ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ((𝑋𝑥) ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} → (𝑋𝑥) ∈ 𝑓))
3533, 34syl5com 31 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → (𝑋𝑥) ∈ 𝑓))
36353expa 1119 . . . . . . . . 9 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ 𝑥𝑋) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → (𝑋𝑥) ∈ 𝑓))
3736impancom 451 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓) → (𝑥𝑋 → (𝑋𝑥) ∈ 𝑓))
3837con3d 152 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓) → (¬ (𝑋𝑥) ∈ 𝑓 → ¬ 𝑥𝑋))
3938impancom 451 . . . . . 6 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ ¬ (𝑋𝑥) ∈ 𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ¬ 𝑥𝑋))
4010, 14, 21, 39syl21anc 838 . . . . 5 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ¬ 𝑥𝑋))
41 bren2 9023 . . . . . 6 (𝑥𝑋 ↔ (𝑥𝑋 ∧ ¬ 𝑥𝑋))
4241simplbi2 500 . . . . 5 (𝑥𝑋 → (¬ 𝑥𝑋𝑥𝑋))
4316, 40, 42sylsyld 61 . . . 4 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓𝑥𝑋))
4443ralrimdva 3154 . . 3 ((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ∀𝑥𝑓 𝑥𝑋))
4544reximdva 3168 . 2 (ω ≼ 𝑋 → (∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋))
468, 45mpd 15 1 (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  cdif 3948  wss 3951  𝒫 cpw 4600   class class class wbr 5143  dom cdm 5685  cfv 6561  ωcom 7887  cen 8982  cdom 8983  csdm 8984  cardccrd 9975  fBascfbas 21352  Filcfil 23853  UFilcufil 23907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-ac2 10503
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rpss 7743  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-oi 9550  df-dju 9941  df-card 9979  df-ac 10156  df-fbas 21361  df-fg 21362  df-fil 23854  df-ufil 23909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator