MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilen Structured version   Visualization version   GIF version

Theorem ufilen 23281
Description: Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
Assertion
Ref Expression
ufilen (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋)
Distinct variable group:   𝑥,𝑓,𝑋

Proof of Theorem ufilen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reldom 8889 . . . . . 6 Rel ≼
21brrelex2i 5689 . . . . 5 (ω ≼ 𝑋𝑋 ∈ V)
3 numth3 10406 . . . . 5 (𝑋 ∈ V → 𝑋 ∈ dom card)
42, 3syl 17 . . . 4 (ω ≼ 𝑋𝑋 ∈ dom card)
5 csdfil 23245 . . . 4 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋))
64, 5mpancom 686 . . 3 (ω ≼ 𝑋 → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋))
7 filssufil 23263 . . 3 ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓)
86, 7syl 17 . 2 (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓)
9 elfvex 6880 . . . . . . 7 (𝑓 ∈ (UFil‘𝑋) → 𝑋 ∈ V)
109ad2antlr 725 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑋 ∈ V)
11 ufilfil 23255 . . . . . . . 8 (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (Fil‘𝑋))
12 filelss 23203 . . . . . . . 8 ((𝑓 ∈ (Fil‘𝑋) ∧ 𝑥𝑓) → 𝑥𝑋)
1311, 12sylan 580 . . . . . . 7 ((𝑓 ∈ (UFil‘𝑋) ∧ 𝑥𝑓) → 𝑥𝑋)
1413adantll 712 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑥𝑋)
15 ssdomg 8940 . . . . . 6 (𝑋 ∈ V → (𝑥𝑋𝑥𝑋))
1610, 14, 15sylc 65 . . . . 5 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑥𝑋)
17 filfbas 23199 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑋) → 𝑓 ∈ (fBas‘𝑋))
1811, 17syl 17 . . . . . . . 8 (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (fBas‘𝑋))
1918adantl 482 . . . . . . 7 ((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) → 𝑓 ∈ (fBas‘𝑋))
20 fbncp 23190 . . . . . . 7 ((𝑓 ∈ (fBas‘𝑋) ∧ 𝑥𝑓) → ¬ (𝑋𝑥) ∈ 𝑓)
2119, 20sylan 580 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ¬ (𝑋𝑥) ∈ 𝑓)
22 difeq2 4076 . . . . . . . . . . . . 13 (𝑦 = (𝑋𝑥) → (𝑋𝑦) = (𝑋 ∖ (𝑋𝑥)))
2322breq1d 5115 . . . . . . . . . . . 12 (𝑦 = (𝑋𝑥) → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) ≺ 𝑋))
24 difss 4091 . . . . . . . . . . . . . 14 (𝑋𝑥) ⊆ 𝑋
25 elpw2g 5301 . . . . . . . . . . . . . 14 (𝑋 ∈ V → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
2624, 25mpbiri 257 . . . . . . . . . . . . 13 (𝑋 ∈ V → (𝑋𝑥) ∈ 𝒫 𝑋)
27263ad2ant1 1133 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋𝑥) ∈ 𝒫 𝑋)
28 simp2 1137 . . . . . . . . . . . . . 14 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → 𝑥𝑋)
29 dfss4 4218 . . . . . . . . . . . . . 14 (𝑥𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) = 𝑥)
3028, 29sylib 217 . . . . . . . . . . . . 13 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋 ∖ (𝑋𝑥)) = 𝑥)
31 simp3 1138 . . . . . . . . . . . . 13 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → 𝑥𝑋)
3230, 31eqbrtrd 5127 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋 ∖ (𝑋𝑥)) ≺ 𝑋)
3323, 27, 32elrabd 3647 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋𝑥) ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋})
34 ssel 3937 . . . . . . . . . . 11 ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ((𝑋𝑥) ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} → (𝑋𝑥) ∈ 𝑓))
3533, 34syl5com 31 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → (𝑋𝑥) ∈ 𝑓))
36353expa 1118 . . . . . . . . 9 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ 𝑥𝑋) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → (𝑋𝑥) ∈ 𝑓))
3736impancom 452 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓) → (𝑥𝑋 → (𝑋𝑥) ∈ 𝑓))
3837con3d 152 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓) → (¬ (𝑋𝑥) ∈ 𝑓 → ¬ 𝑥𝑋))
3938impancom 452 . . . . . 6 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ ¬ (𝑋𝑥) ∈ 𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ¬ 𝑥𝑋))
4010, 14, 21, 39syl21anc 836 . . . . 5 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ¬ 𝑥𝑋))
41 bren2 8923 . . . . . 6 (𝑥𝑋 ↔ (𝑥𝑋 ∧ ¬ 𝑥𝑋))
4241simplbi2 501 . . . . 5 (𝑥𝑋 → (¬ 𝑥𝑋𝑥𝑋))
4316, 40, 42sylsyld 61 . . . 4 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓𝑥𝑋))
4443ralrimdva 3151 . . 3 ((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ∀𝑥𝑓 𝑥𝑋))
4544reximdva 3165 . 2 (ω ≼ 𝑋 → (∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋))
468, 45mpd 15 1 (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cdif 3907  wss 3910  𝒫 cpw 4560   class class class wbr 5105  dom cdm 5633  cfv 6496  ωcom 7802  cen 8880  cdom 8881  csdm 8882  cardccrd 9871  fBascfbas 20784  Filcfil 23196  UFilcufil 23250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-ac2 10399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-rpss 7660  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-oi 9446  df-dju 9837  df-card 9875  df-ac 10052  df-fbas 20793  df-fg 20794  df-fil 23197  df-ufil 23252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator