| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enrefg | Structured version Visualization version GIF version | ||
| Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| enrefg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6797 | . . 3 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 2 | f1oen2g 8886 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) → 𝐴 ≈ 𝐴) | |
| 3 | 1, 2 | mp3an3 1452 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ 𝐴) |
| 4 | 3 | anidms 566 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 class class class wbr 5089 I cid 5508 ↾ cres 5616 –1-1-onto→wf1o 6476 ≈ cen 8861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-en 8865 |
| This theorem is referenced by: enref 8902 eqeng 8903 domrefg 8904 difsnen 8967 sdomirr 9022 mapdom1 9050 mapdom2 9056 rneqdmfinf1o 9212 infdifsn 9542 infdiffi 9543 onenon 9834 cardonle 9842 dju1en 10055 xpdjuen 10063 mapdjuen 10064 onadju 10077 nnadju 10081 ssfin4 10193 canthp1lem1 10535 gchhar 10562 hashfac 14357 mreexexlem3d 17544 cyggenod 19789 mdetunilem8 22527 frlmpwfi 43110 fiuneneq 43204 enrelmap 44009 |
| Copyright terms: Public domain | W3C validator |