Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enrefg | Structured version Visualization version GIF version |
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
enrefg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6643 | . . 3 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
2 | f1oen2g 8549 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) → 𝐴 ≈ 𝐴) | |
3 | 1, 2 | mp3an3 1447 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ 𝐴) |
4 | 3 | anidms 570 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5035 I cid 5432 ↾ cres 5529 –1-1-onto→wf1o 6338 ≈ cen 8529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-en 8533 |
This theorem is referenced by: enref 8565 eqeng 8566 domrefg 8567 difsnen 8625 sdomirr 8681 mapdom1 8709 mapdom2 8715 onfin 8753 rneqdmfinf1o 8838 infdifsn 9158 infdiffi 9159 onenon 9416 cardonle 9424 dju1en 9636 xpdjuen 9644 mapdjuen 9645 onadju 9658 nnadju 9662 ssfin4 9775 canthp1lem1 10117 gchhar 10144 hashfac 13873 mreexexlem3d 16980 cyggenod 19076 fidomndrnglem 20152 mdetunilem8 21324 frlmpwfi 40443 fiuneneq 40542 enrelmap 41099 |
Copyright terms: Public domain | W3C validator |