MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrefg Structured version   Visualization version   GIF version

Theorem enrefg 8916
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
enrefg (𝐴𝑉𝐴𝐴)

Proof of Theorem enrefg
StepHypRef Expression
1 f1oi 6806 . . 3 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 f1oen2g 8901 . . 3 ((𝐴𝑉𝐴𝑉 ∧ ( I ↾ 𝐴):𝐴1-1-onto𝐴) → 𝐴𝐴)
31, 2mp3an3 1452 . 2 ((𝐴𝑉𝐴𝑉) → 𝐴𝐴)
43anidms 566 1 (𝐴𝑉𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5095   I cid 5517  cres 5625  1-1-ontowf1o 6485  cen 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-en 8880
This theorem is referenced by:  enref  8917  eqeng  8918  domrefg  8919  difsnen  8983  sdomirr  9038  mapdom1  9066  mapdom2  9072  rneqdmfinf1o  9242  infdifsn  9572  infdiffi  9573  onenon  9864  cardonle  9872  dju1en  10085  xpdjuen  10093  mapdjuen  10094  onadju  10107  nnadju  10111  ssfin4  10223  canthp1lem1  10565  gchhar  10592  hashfac  14383  mreexexlem3d  17570  cyggenod  19781  mdetunilem8  22522  frlmpwfi  43071  fiuneneq  43165  enrelmap  43970
  Copyright terms: Public domain W3C validator