![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enrefg | Structured version Visualization version GIF version |
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
enrefg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6900 | . . 3 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
2 | f1oen2g 9028 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) → 𝐴 ≈ 𝐴) | |
3 | 1, 2 | mp3an3 1450 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ 𝐴) |
4 | 3 | anidms 566 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 I cid 5592 ↾ cres 5702 –1-1-onto→wf1o 6572 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-en 9004 |
This theorem is referenced by: enref 9045 eqeng 9046 domrefg 9047 difsnen 9119 sdomirr 9180 mapdom1 9208 mapdom2 9214 rneqdmfinf1o 9401 infdifsn 9726 infdiffi 9727 onenon 10018 cardonle 10026 dju1en 10241 xpdjuen 10249 mapdjuen 10250 onadju 10263 nnadju 10267 ssfin4 10379 canthp1lem1 10721 gchhar 10748 hashfac 14507 mreexexlem3d 17704 cyggenod 19926 mdetunilem8 22646 frlmpwfi 43055 fiuneneq 43153 enrelmap 43959 |
Copyright terms: Public domain | W3C validator |