MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrefg Structured version   Visualization version   GIF version

Theorem enrefg 8958
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
enrefg (𝐴𝑉𝐴𝐴)

Proof of Theorem enrefg
StepHypRef Expression
1 f1oi 6841 . . 3 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 f1oen2g 8943 . . 3 ((𝐴𝑉𝐴𝑉 ∧ ( I ↾ 𝐴):𝐴1-1-onto𝐴) → 𝐴𝐴)
31, 2mp3an3 1452 . 2 ((𝐴𝑉𝐴𝑉) → 𝐴𝐴)
43anidms 566 1 (𝐴𝑉𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5110   I cid 5535  cres 5643  1-1-ontowf1o 6513  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-en 8922
This theorem is referenced by:  enref  8959  eqeng  8960  domrefg  8961  difsnen  9027  sdomirr  9084  mapdom1  9112  mapdom2  9118  rneqdmfinf1o  9291  infdifsn  9617  infdiffi  9618  onenon  9909  cardonle  9917  dju1en  10132  xpdjuen  10140  mapdjuen  10141  onadju  10154  nnadju  10158  ssfin4  10270  canthp1lem1  10612  gchhar  10639  hashfac  14430  mreexexlem3d  17614  cyggenod  19821  mdetunilem8  22513  frlmpwfi  43094  fiuneneq  43188  enrelmap  43993
  Copyright terms: Public domain W3C validator