MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrefg Structured version   Visualization version   GIF version

Theorem enrefg 9024
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
enrefg (𝐴𝑉𝐴𝐴)

Proof of Theorem enrefg
StepHypRef Expression
1 f1oi 6886 . . 3 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 f1oen2g 9009 . . 3 ((𝐴𝑉𝐴𝑉 ∧ ( I ↾ 𝐴):𝐴1-1-onto𝐴) → 𝐴𝐴)
31, 2mp3an3 1452 . 2 ((𝐴𝑉𝐴𝑉) → 𝐴𝐴)
43anidms 566 1 (𝐴𝑉𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5143   I cid 5577  cres 5687  1-1-ontowf1o 6560  cen 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-en 8986
This theorem is referenced by:  enref  9025  eqeng  9026  domrefg  9027  difsnen  9093  sdomirr  9154  mapdom1  9182  mapdom2  9188  rneqdmfinf1o  9373  infdifsn  9697  infdiffi  9698  onenon  9989  cardonle  9997  dju1en  10212  xpdjuen  10220  mapdjuen  10221  onadju  10234  nnadju  10238  ssfin4  10350  canthp1lem1  10692  gchhar  10719  hashfac  14497  mreexexlem3d  17689  cyggenod  19902  mdetunilem8  22625  frlmpwfi  43110  fiuneneq  43204  enrelmap  44010
  Copyright terms: Public domain W3C validator