| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enrefg | Structured version Visualization version GIF version | ||
| Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| enrefg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6838 | . . 3 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 2 | f1oen2g 8940 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) → 𝐴 ≈ 𝐴) | |
| 3 | 1, 2 | mp3an3 1452 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ 𝐴) |
| 4 | 3 | anidms 566 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 I cid 5532 ↾ cres 5640 –1-1-onto→wf1o 6510 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-en 8919 |
| This theorem is referenced by: enref 8956 eqeng 8957 domrefg 8958 difsnen 9023 sdomirr 9078 mapdom1 9106 mapdom2 9112 rneqdmfinf1o 9284 infdifsn 9610 infdiffi 9611 onenon 9902 cardonle 9910 dju1en 10125 xpdjuen 10133 mapdjuen 10134 onadju 10147 nnadju 10151 ssfin4 10263 canthp1lem1 10605 gchhar 10632 hashfac 14423 mreexexlem3d 17607 cyggenod 19814 mdetunilem8 22506 frlmpwfi 43087 fiuneneq 43181 enrelmap 43986 |
| Copyright terms: Public domain | W3C validator |