MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrefg Structured version   Visualization version   GIF version

Theorem enrefg 8727
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
enrefg (𝐴𝑉𝐴𝐴)

Proof of Theorem enrefg
StepHypRef Expression
1 f1oi 6737 . . 3 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 f1oen2g 8711 . . 3 ((𝐴𝑉𝐴𝑉 ∧ ( I ↾ 𝐴):𝐴1-1-onto𝐴) → 𝐴𝐴)
31, 2mp3an3 1448 . 2 ((𝐴𝑉𝐴𝑉) → 𝐴𝐴)
43anidms 566 1 (𝐴𝑉𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5070   I cid 5479  cres 5582  1-1-ontowf1o 6417  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-en 8692
This theorem is referenced by:  enref  8728  eqeng  8729  domrefg  8730  difsnen  8794  sdomirr  8850  mapdom1  8878  mapdom2  8884  onfin  8944  rneqdmfinf1o  9025  infdifsn  9345  infdiffi  9346  onenon  9638  cardonle  9646  dju1en  9858  xpdjuen  9866  mapdjuen  9867  onadju  9880  nnadju  9884  ssfin4  9997  canthp1lem1  10339  gchhar  10366  hashfac  14100  mreexexlem3d  17272  cyggenod  19399  fidomndrnglem  20491  mdetunilem8  21676  frlmpwfi  40839  fiuneneq  40938  enrelmap  41494
  Copyright terms: Public domain W3C validator