| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enrefg | Structured version Visualization version GIF version | ||
| Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| enrefg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6809 | . . 3 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 2 | f1oen2g 8900 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) → 𝐴 ≈ 𝐴) | |
| 3 | 1, 2 | mp3an3 1452 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≈ 𝐴) |
| 4 | 3 | anidms 566 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5095 I cid 5515 ↾ cres 5623 –1-1-onto→wf1o 6488 ≈ cen 8875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-en 8879 |
| This theorem is referenced by: enref 8917 eqeng 8918 domrefg 8919 difsnen 8982 sdomirr 9037 mapdom1 9065 mapdom2 9071 rneqdmfinf1o 9227 infdifsn 9557 infdiffi 9558 onenon 9852 cardonle 9860 dju1en 10073 xpdjuen 10081 mapdjuen 10082 onadju 10095 nnadju 10099 ssfin4 10211 canthp1lem1 10553 gchhar 10580 hashfac 14375 mreexexlem3d 17562 cyggenod 19806 mdetunilem8 22544 frlmpwfi 43205 fiuneneq 43299 enrelmap 44104 |
| Copyright terms: Public domain | W3C validator |