MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdainflem Structured version   Visualization version   GIF version

Theorem cdainflem 10117
Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013.)
Assertion
Ref Expression
cdainflem ((𝐴𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))

Proof of Theorem cdainflem
StepHypRef Expression
1 unfi2 9235 . . . 4 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
2 sdomnen 8929 . . . 4 ((𝐴𝐵) ≺ ω → ¬ (𝐴𝐵) ≈ ω)
31, 2syl 17 . . 3 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ¬ (𝐴𝐵) ≈ ω)
43con2i 139 . 2 ((𝐴𝐵) ≈ ω → ¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω))
5 ianor 983 . . 3 (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) ↔ (¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω))
6 relen 8900 . . . . . . . . . 10 Rel ≈
76brrelex1i 5687 . . . . . . . . 9 ((𝐴𝐵) ≈ ω → (𝐴𝐵) ∈ V)
8 ssun1 4137 . . . . . . . . 9 𝐴 ⊆ (𝐴𝐵)
9 ssdomg 8948 . . . . . . . . 9 ((𝐴𝐵) ∈ V → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
107, 8, 9mpisyl 21 . . . . . . . 8 ((𝐴𝐵) ≈ ω → 𝐴 ≼ (𝐴𝐵))
11 domentr 8961 . . . . . . . 8 ((𝐴 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≈ ω) → 𝐴 ≼ ω)
1210, 11mpancom 688 . . . . . . 7 ((𝐴𝐵) ≈ ω → 𝐴 ≼ ω)
1312anim1i 615 . . . . . 6 (((𝐴𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
14 bren2 8931 . . . . . 6 (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
1513, 14sylibr 234 . . . . 5 (((𝐴𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → 𝐴 ≈ ω)
1615ex 412 . . . 4 ((𝐴𝐵) ≈ ω → (¬ 𝐴 ≺ ω → 𝐴 ≈ ω))
17 ssun2 4138 . . . . . . . . 9 𝐵 ⊆ (𝐴𝐵)
18 ssdomg 8948 . . . . . . . . 9 ((𝐴𝐵) ∈ V → (𝐵 ⊆ (𝐴𝐵) → 𝐵 ≼ (𝐴𝐵)))
197, 17, 18mpisyl 21 . . . . . . . 8 ((𝐴𝐵) ≈ ω → 𝐵 ≼ (𝐴𝐵))
20 domentr 8961 . . . . . . . 8 ((𝐵 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≈ ω) → 𝐵 ≼ ω)
2119, 20mpancom 688 . . . . . . 7 ((𝐴𝐵) ≈ ω → 𝐵 ≼ ω)
2221anim1i 615 . . . . . 6 (((𝐴𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω))
23 bren2 8931 . . . . . 6 (𝐵 ≈ ω ↔ (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω))
2422, 23sylibr 234 . . . . 5 (((𝐴𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → 𝐵 ≈ ω)
2524ex 412 . . . 4 ((𝐴𝐵) ≈ ω → (¬ 𝐵 ≺ ω → 𝐵 ≈ ω))
2616, 25orim12d 966 . . 3 ((𝐴𝐵) ≈ ω → ((¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)))
275, 26biimtrid 242 . 2 ((𝐴𝐵) ≈ ω → (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)))
284, 27mpd 15 1 ((𝐴𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wcel 2109  Vcvv 3444  cun 3909  wss 3911   class class class wbr 5102  ωcom 7822  cen 8892  cdom 8893  csdm 8894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899
This theorem is referenced by:  djuinf  10118
  Copyright terms: Public domain W3C validator