Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cdainflem | Structured version Visualization version GIF version |
Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013.) |
Ref | Expression |
---|---|
cdainflem | ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unfi2 9013 | . . . 4 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) | |
2 | sdomnen 8724 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≺ ω → ¬ (𝐴 ∪ 𝐵) ≈ ω) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ¬ (𝐴 ∪ 𝐵) ≈ ω) |
4 | 3 | con2i 139 | . 2 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → ¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω)) |
5 | ianor 978 | . . 3 ⊢ (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) ↔ (¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω)) | |
6 | relen 8696 | . . . . . . . . . 10 ⊢ Rel ≈ | |
7 | 6 | brrelex1i 5634 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ∪ 𝐵) ∈ V) |
8 | ssun1 4102 | . . . . . . . . 9 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
9 | ssdomg 8741 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ⊆ (𝐴 ∪ 𝐵) → 𝐴 ≼ (𝐴 ∪ 𝐵))) | |
10 | 7, 8, 9 | mpisyl 21 | . . . . . . . 8 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐴 ≼ (𝐴 ∪ 𝐵)) |
11 | domentr 8754 | . . . . . . . 8 ⊢ ((𝐴 ≼ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ≈ ω) → 𝐴 ≼ ω) | |
12 | 10, 11 | mpancom 684 | . . . . . . 7 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐴 ≼ ω) |
13 | 12 | anim1i 614 | . . . . . 6 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) |
14 | bren2 8726 | . . . . . 6 ⊢ (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) | |
15 | 13, 14 | sylibr 233 | . . . . 5 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → 𝐴 ≈ ω) |
16 | 15 | ex 412 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ 𝐴 ≺ ω → 𝐴 ≈ ω)) |
17 | ssun2 4103 | . . . . . . . . 9 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
18 | ssdomg 8741 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐵 ⊆ (𝐴 ∪ 𝐵) → 𝐵 ≼ (𝐴 ∪ 𝐵))) | |
19 | 7, 17, 18 | mpisyl 21 | . . . . . . . 8 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐵 ≼ (𝐴 ∪ 𝐵)) |
20 | domentr 8754 | . . . . . . . 8 ⊢ ((𝐵 ≼ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ≈ ω) → 𝐵 ≼ ω) | |
21 | 19, 20 | mpancom 684 | . . . . . . 7 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐵 ≼ ω) |
22 | 21 | anim1i 614 | . . . . . 6 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω)) |
23 | bren2 8726 | . . . . . 6 ⊢ (𝐵 ≈ ω ↔ (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω)) | |
24 | 22, 23 | sylibr 233 | . . . . 5 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → 𝐵 ≈ ω) |
25 | 24 | ex 412 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ 𝐵 ≺ ω → 𝐵 ≈ ω)) |
26 | 16, 25 | orim12d 961 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → ((¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))) |
27 | 5, 26 | syl5bi 241 | . 2 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))) |
28 | 4, 27 | mpd 15 | 1 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 class class class wbr 5070 ωcom 7687 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 |
This theorem is referenced by: djuinf 9875 |
Copyright terms: Public domain | W3C validator |