![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdainflem | Structured version Visualization version GIF version |
Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013.) |
Ref | Expression |
---|---|
cdainflem | ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unfi2 9340 | . . . 4 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) | |
2 | sdomnen 9002 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≺ ω → ¬ (𝐴 ∪ 𝐵) ≈ ω) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ¬ (𝐴 ∪ 𝐵) ≈ ω) |
4 | 3 | con2i 139 | . 2 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → ¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω)) |
5 | ianor 980 | . . 3 ⊢ (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) ↔ (¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω)) | |
6 | relen 8969 | . . . . . . . . . 10 ⊢ Rel ≈ | |
7 | 6 | brrelex1i 5734 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ∪ 𝐵) ∈ V) |
8 | ssun1 4172 | . . . . . . . . 9 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
9 | ssdomg 9021 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ⊆ (𝐴 ∪ 𝐵) → 𝐴 ≼ (𝐴 ∪ 𝐵))) | |
10 | 7, 8, 9 | mpisyl 21 | . . . . . . . 8 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐴 ≼ (𝐴 ∪ 𝐵)) |
11 | domentr 9034 | . . . . . . . 8 ⊢ ((𝐴 ≼ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ≈ ω) → 𝐴 ≼ ω) | |
12 | 10, 11 | mpancom 687 | . . . . . . 7 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐴 ≼ ω) |
13 | 12 | anim1i 614 | . . . . . 6 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) |
14 | bren2 9004 | . . . . . 6 ⊢ (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) | |
15 | 13, 14 | sylibr 233 | . . . . 5 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → 𝐴 ≈ ω) |
16 | 15 | ex 412 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ 𝐴 ≺ ω → 𝐴 ≈ ω)) |
17 | ssun2 4173 | . . . . . . . . 9 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
18 | ssdomg 9021 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐵 ⊆ (𝐴 ∪ 𝐵) → 𝐵 ≼ (𝐴 ∪ 𝐵))) | |
19 | 7, 17, 18 | mpisyl 21 | . . . . . . . 8 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐵 ≼ (𝐴 ∪ 𝐵)) |
20 | domentr 9034 | . . . . . . . 8 ⊢ ((𝐵 ≼ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ≈ ω) → 𝐵 ≼ ω) | |
21 | 19, 20 | mpancom 687 | . . . . . . 7 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐵 ≼ ω) |
22 | 21 | anim1i 614 | . . . . . 6 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω)) |
23 | bren2 9004 | . . . . . 6 ⊢ (𝐵 ≈ ω ↔ (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω)) | |
24 | 22, 23 | sylibr 233 | . . . . 5 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → 𝐵 ≈ ω) |
25 | 24 | ex 412 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ 𝐵 ≺ ω → 𝐵 ≈ ω)) |
26 | 16, 25 | orim12d 963 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → ((¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))) |
27 | 5, 26 | biimtrid 241 | . 2 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))) |
28 | 4, 27 | mpd 15 | 1 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 ∈ wcel 2099 Vcvv 3471 ∪ cun 3945 ⊆ wss 3947 class class class wbr 5148 ωcom 7870 ≈ cen 8961 ≼ cdom 8962 ≺ csdm 8963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 |
This theorem is referenced by: djuinf 10212 |
Copyright terms: Public domain | W3C validator |