![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdainflem | Structured version Visualization version GIF version |
Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013.) |
Ref | Expression |
---|---|
cdainflem | ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unfi2 9265 | . . . 4 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) | |
2 | sdomnen 8927 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≺ ω → ¬ (𝐴 ∪ 𝐵) ≈ ω) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ¬ (𝐴 ∪ 𝐵) ≈ ω) |
4 | 3 | con2i 139 | . 2 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → ¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω)) |
5 | ianor 981 | . . 3 ⊢ (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) ↔ (¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω)) | |
6 | relen 8894 | . . . . . . . . . 10 ⊢ Rel ≈ | |
7 | 6 | brrelex1i 5692 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ∪ 𝐵) ∈ V) |
8 | ssun1 4136 | . . . . . . . . 9 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
9 | ssdomg 8946 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ⊆ (𝐴 ∪ 𝐵) → 𝐴 ≼ (𝐴 ∪ 𝐵))) | |
10 | 7, 8, 9 | mpisyl 21 | . . . . . . . 8 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐴 ≼ (𝐴 ∪ 𝐵)) |
11 | domentr 8959 | . . . . . . . 8 ⊢ ((𝐴 ≼ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ≈ ω) → 𝐴 ≼ ω) | |
12 | 10, 11 | mpancom 687 | . . . . . . 7 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐴 ≼ ω) |
13 | 12 | anim1i 616 | . . . . . 6 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) |
14 | bren2 8929 | . . . . . 6 ⊢ (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) | |
15 | 13, 14 | sylibr 233 | . . . . 5 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → 𝐴 ≈ ω) |
16 | 15 | ex 414 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ 𝐴 ≺ ω → 𝐴 ≈ ω)) |
17 | ssun2 4137 | . . . . . . . . 9 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
18 | ssdomg 8946 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐵 ⊆ (𝐴 ∪ 𝐵) → 𝐵 ≼ (𝐴 ∪ 𝐵))) | |
19 | 7, 17, 18 | mpisyl 21 | . . . . . . . 8 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐵 ≼ (𝐴 ∪ 𝐵)) |
20 | domentr 8959 | . . . . . . . 8 ⊢ ((𝐵 ≼ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ≈ ω) → 𝐵 ≼ ω) | |
21 | 19, 20 | mpancom 687 | . . . . . . 7 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐵 ≼ ω) |
22 | 21 | anim1i 616 | . . . . . 6 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω)) |
23 | bren2 8929 | . . . . . 6 ⊢ (𝐵 ≈ ω ↔ (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω)) | |
24 | 22, 23 | sylibr 233 | . . . . 5 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → 𝐵 ≈ ω) |
25 | 24 | ex 414 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ 𝐵 ≺ ω → 𝐵 ≈ ω)) |
26 | 16, 25 | orim12d 964 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → ((¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))) |
27 | 5, 26 | biimtrid 241 | . 2 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))) |
28 | 4, 27 | mpd 15 | 1 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 846 ∈ wcel 2107 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 class class class wbr 5109 ωcom 7806 ≈ cen 8886 ≼ cdom 8887 ≺ csdm 8888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-om 7807 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 |
This theorem is referenced by: djuinf 10132 |
Copyright terms: Public domain | W3C validator |