MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdainflem Structured version   Visualization version   GIF version

Theorem cdainflem 10257
Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013.)
Assertion
Ref Expression
cdainflem ((𝐴𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))

Proof of Theorem cdainflem
StepHypRef Expression
1 unfi2 9376 . . . 4 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
2 sdomnen 9041 . . . 4 ((𝐴𝐵) ≺ ω → ¬ (𝐴𝐵) ≈ ω)
31, 2syl 17 . . 3 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ¬ (𝐴𝐵) ≈ ω)
43con2i 139 . 2 ((𝐴𝐵) ≈ ω → ¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω))
5 ianor 982 . . 3 (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) ↔ (¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω))
6 relen 9008 . . . . . . . . . 10 Rel ≈
76brrelex1i 5756 . . . . . . . . 9 ((𝐴𝐵) ≈ ω → (𝐴𝐵) ∈ V)
8 ssun1 4201 . . . . . . . . 9 𝐴 ⊆ (𝐴𝐵)
9 ssdomg 9060 . . . . . . . . 9 ((𝐴𝐵) ∈ V → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
107, 8, 9mpisyl 21 . . . . . . . 8 ((𝐴𝐵) ≈ ω → 𝐴 ≼ (𝐴𝐵))
11 domentr 9073 . . . . . . . 8 ((𝐴 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≈ ω) → 𝐴 ≼ ω)
1210, 11mpancom 687 . . . . . . 7 ((𝐴𝐵) ≈ ω → 𝐴 ≼ ω)
1312anim1i 614 . . . . . 6 (((𝐴𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
14 bren2 9043 . . . . . 6 (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
1513, 14sylibr 234 . . . . 5 (((𝐴𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → 𝐴 ≈ ω)
1615ex 412 . . . 4 ((𝐴𝐵) ≈ ω → (¬ 𝐴 ≺ ω → 𝐴 ≈ ω))
17 ssun2 4202 . . . . . . . . 9 𝐵 ⊆ (𝐴𝐵)
18 ssdomg 9060 . . . . . . . . 9 ((𝐴𝐵) ∈ V → (𝐵 ⊆ (𝐴𝐵) → 𝐵 ≼ (𝐴𝐵)))
197, 17, 18mpisyl 21 . . . . . . . 8 ((𝐴𝐵) ≈ ω → 𝐵 ≼ (𝐴𝐵))
20 domentr 9073 . . . . . . . 8 ((𝐵 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≈ ω) → 𝐵 ≼ ω)
2119, 20mpancom 687 . . . . . . 7 ((𝐴𝐵) ≈ ω → 𝐵 ≼ ω)
2221anim1i 614 . . . . . 6 (((𝐴𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω))
23 bren2 9043 . . . . . 6 (𝐵 ≈ ω ↔ (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω))
2422, 23sylibr 234 . . . . 5 (((𝐴𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → 𝐵 ≈ ω)
2524ex 412 . . . 4 ((𝐴𝐵) ≈ ω → (¬ 𝐵 ≺ ω → 𝐵 ≈ ω))
2616, 25orim12d 965 . . 3 ((𝐴𝐵) ≈ ω → ((¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)))
275, 26biimtrid 242 . 2 ((𝐴𝐵) ≈ ω → (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)))
284, 27mpd 15 1 ((𝐴𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  wcel 2108  Vcvv 3488  cun 3974  wss 3976   class class class wbr 5166  ωcom 7903  cen 9000  cdom 9001  csdm 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007
This theorem is referenced by:  djuinf  10258
  Copyright terms: Public domain W3C validator