| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cdainflem | Structured version Visualization version GIF version | ||
| Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013.) |
| Ref | Expression |
|---|---|
| cdainflem | ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfi2 9325 | . . . 4 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) | |
| 2 | sdomnen 9000 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≺ ω → ¬ (𝐴 ∪ 𝐵) ≈ ω) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ¬ (𝐴 ∪ 𝐵) ≈ ω) |
| 4 | 3 | con2i 139 | . 2 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → ¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω)) |
| 5 | ianor 983 | . . 3 ⊢ (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) ↔ (¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω)) | |
| 6 | relen 8969 | . . . . . . . . . 10 ⊢ Rel ≈ | |
| 7 | 6 | brrelex1i 5715 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ∪ 𝐵) ∈ V) |
| 8 | ssun1 4158 | . . . . . . . . 9 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 9 | ssdomg 9019 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ⊆ (𝐴 ∪ 𝐵) → 𝐴 ≼ (𝐴 ∪ 𝐵))) | |
| 10 | 7, 8, 9 | mpisyl 21 | . . . . . . . 8 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐴 ≼ (𝐴 ∪ 𝐵)) |
| 11 | domentr 9032 | . . . . . . . 8 ⊢ ((𝐴 ≼ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ≈ ω) → 𝐴 ≼ ω) | |
| 12 | 10, 11 | mpancom 688 | . . . . . . 7 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐴 ≼ ω) |
| 13 | 12 | anim1i 615 | . . . . . 6 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) |
| 14 | bren2 9002 | . . . . . 6 ⊢ (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) | |
| 15 | 13, 14 | sylibr 234 | . . . . 5 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → 𝐴 ≈ ω) |
| 16 | 15 | ex 412 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ 𝐴 ≺ ω → 𝐴 ≈ ω)) |
| 17 | ssun2 4159 | . . . . . . . . 9 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 18 | ssdomg 9019 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐵 ⊆ (𝐴 ∪ 𝐵) → 𝐵 ≼ (𝐴 ∪ 𝐵))) | |
| 19 | 7, 17, 18 | mpisyl 21 | . . . . . . . 8 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐵 ≼ (𝐴 ∪ 𝐵)) |
| 20 | domentr 9032 | . . . . . . . 8 ⊢ ((𝐵 ≼ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ≈ ω) → 𝐵 ≼ ω) | |
| 21 | 19, 20 | mpancom 688 | . . . . . . 7 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐵 ≼ ω) |
| 22 | 21 | anim1i 615 | . . . . . 6 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω)) |
| 23 | bren2 9002 | . . . . . 6 ⊢ (𝐵 ≈ ω ↔ (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω)) | |
| 24 | 22, 23 | sylibr 234 | . . . . 5 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → 𝐵 ≈ ω) |
| 25 | 24 | ex 412 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ 𝐵 ≺ ω → 𝐵 ≈ ω)) |
| 26 | 16, 25 | orim12d 966 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → ((¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))) |
| 27 | 5, 26 | biimtrid 242 | . 2 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))) |
| 28 | 4, 27 | mpd 15 | 1 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 ⊆ wss 3931 class class class wbr 5124 ωcom 7866 ≈ cen 8961 ≼ cdom 8962 ≺ csdm 8963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 |
| This theorem is referenced by: djuinf 10208 |
| Copyright terms: Public domain | W3C validator |