| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cdainflem | Structured version Visualization version GIF version | ||
| Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013.) |
| Ref | Expression |
|---|---|
| cdainflem | ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfi2 9205 | . . . 4 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) | |
| 2 | sdomnen 8914 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≺ ω → ¬ (𝐴 ∪ 𝐵) ≈ ω) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ¬ (𝐴 ∪ 𝐵) ≈ ω) |
| 4 | 3 | con2i 139 | . 2 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → ¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω)) |
| 5 | ianor 983 | . . 3 ⊢ (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) ↔ (¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω)) | |
| 6 | relen 8884 | . . . . . . . . . 10 ⊢ Rel ≈ | |
| 7 | 6 | brrelex1i 5677 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ∪ 𝐵) ∈ V) |
| 8 | ssun1 4127 | . . . . . . . . 9 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 9 | ssdomg 8933 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ⊆ (𝐴 ∪ 𝐵) → 𝐴 ≼ (𝐴 ∪ 𝐵))) | |
| 10 | 7, 8, 9 | mpisyl 21 | . . . . . . . 8 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐴 ≼ (𝐴 ∪ 𝐵)) |
| 11 | domentr 8946 | . . . . . . . 8 ⊢ ((𝐴 ≼ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ≈ ω) → 𝐴 ≼ ω) | |
| 12 | 10, 11 | mpancom 688 | . . . . . . 7 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐴 ≼ ω) |
| 13 | 12 | anim1i 615 | . . . . . 6 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) |
| 14 | bren2 8916 | . . . . . 6 ⊢ (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω)) | |
| 15 | 13, 14 | sylibr 234 | . . . . 5 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → 𝐴 ≈ ω) |
| 16 | 15 | ex 412 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ 𝐴 ≺ ω → 𝐴 ≈ ω)) |
| 17 | ssun2 4128 | . . . . . . . . 9 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 18 | ssdomg 8933 | . . . . . . . . 9 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐵 ⊆ (𝐴 ∪ 𝐵) → 𝐵 ≼ (𝐴 ∪ 𝐵))) | |
| 19 | 7, 17, 18 | mpisyl 21 | . . . . . . . 8 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐵 ≼ (𝐴 ∪ 𝐵)) |
| 20 | domentr 8946 | . . . . . . . 8 ⊢ ((𝐵 ≼ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ≈ ω) → 𝐵 ≼ ω) | |
| 21 | 19, 20 | mpancom 688 | . . . . . . 7 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → 𝐵 ≼ ω) |
| 22 | 21 | anim1i 615 | . . . . . 6 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω)) |
| 23 | bren2 8916 | . . . . . 6 ⊢ (𝐵 ≈ ω ↔ (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω)) | |
| 24 | 22, 23 | sylibr 234 | . . . . 5 ⊢ (((𝐴 ∪ 𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → 𝐵 ≈ ω) |
| 25 | 24 | ex 412 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ 𝐵 ≺ ω → 𝐵 ≈ ω)) |
| 26 | 16, 25 | orim12d 966 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → ((¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))) |
| 27 | 5, 26 | biimtrid 242 | . 2 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))) |
| 28 | 4, 27 | mpd 15 | 1 ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 ⊆ wss 3898 class class class wbr 5095 ωcom 7805 ≈ cen 8876 ≼ cdom 8877 ≺ csdm 8878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 |
| This theorem is referenced by: djuinf 10091 |
| Copyright terms: Public domain | W3C validator |