MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdainflem Structured version   Visualization version   GIF version

Theorem cdainflem 9943
Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013.)
Assertion
Ref Expression
cdainflem ((𝐴𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))

Proof of Theorem cdainflem
StepHypRef Expression
1 unfi2 9083 . . . 4 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
2 sdomnen 8769 . . . 4 ((𝐴𝐵) ≺ ω → ¬ (𝐴𝐵) ≈ ω)
31, 2syl 17 . . 3 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ¬ (𝐴𝐵) ≈ ω)
43con2i 139 . 2 ((𝐴𝐵) ≈ ω → ¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω))
5 ianor 979 . . 3 (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) ↔ (¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω))
6 relen 8738 . . . . . . . . . 10 Rel ≈
76brrelex1i 5643 . . . . . . . . 9 ((𝐴𝐵) ≈ ω → (𝐴𝐵) ∈ V)
8 ssun1 4106 . . . . . . . . 9 𝐴 ⊆ (𝐴𝐵)
9 ssdomg 8786 . . . . . . . . 9 ((𝐴𝐵) ∈ V → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
107, 8, 9mpisyl 21 . . . . . . . 8 ((𝐴𝐵) ≈ ω → 𝐴 ≼ (𝐴𝐵))
11 domentr 8799 . . . . . . . 8 ((𝐴 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≈ ω) → 𝐴 ≼ ω)
1210, 11mpancom 685 . . . . . . 7 ((𝐴𝐵) ≈ ω → 𝐴 ≼ ω)
1312anim1i 615 . . . . . 6 (((𝐴𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
14 bren2 8771 . . . . . 6 (𝐴 ≈ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω))
1513, 14sylibr 233 . . . . 5 (((𝐴𝐵) ≈ ω ∧ ¬ 𝐴 ≺ ω) → 𝐴 ≈ ω)
1615ex 413 . . . 4 ((𝐴𝐵) ≈ ω → (¬ 𝐴 ≺ ω → 𝐴 ≈ ω))
17 ssun2 4107 . . . . . . . . 9 𝐵 ⊆ (𝐴𝐵)
18 ssdomg 8786 . . . . . . . . 9 ((𝐴𝐵) ∈ V → (𝐵 ⊆ (𝐴𝐵) → 𝐵 ≼ (𝐴𝐵)))
197, 17, 18mpisyl 21 . . . . . . . 8 ((𝐴𝐵) ≈ ω → 𝐵 ≼ (𝐴𝐵))
20 domentr 8799 . . . . . . . 8 ((𝐵 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≈ ω) → 𝐵 ≼ ω)
2119, 20mpancom 685 . . . . . . 7 ((𝐴𝐵) ≈ ω → 𝐵 ≼ ω)
2221anim1i 615 . . . . . 6 (((𝐴𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω))
23 bren2 8771 . . . . . 6 (𝐵 ≈ ω ↔ (𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω))
2422, 23sylibr 233 . . . . 5 (((𝐴𝐵) ≈ ω ∧ ¬ 𝐵 ≺ ω) → 𝐵 ≈ ω)
2524ex 413 . . . 4 ((𝐴𝐵) ≈ ω → (¬ 𝐵 ≺ ω → 𝐵 ≈ ω))
2616, 25orim12d 962 . . 3 ((𝐴𝐵) ≈ ω → ((¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)))
275, 26syl5bi 241 . 2 ((𝐴𝐵) ≈ ω → (¬ (𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)))
284, 27mpd 15 1 ((𝐴𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  wcel 2106  Vcvv 3432  cun 3885  wss 3887   class class class wbr 5074  ωcom 7712  cen 8730  cdom 8731  csdm 8732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737
This theorem is referenced by:  djuinf  9944
  Copyright terms: Public domain W3C validator