MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffthf1o Structured version   Visualization version   GIF version

Theorem ffthf1o 17982
Description: The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
isfth.b 𝐵 = (Base‘𝐶)
isfth.h 𝐻 = (Hom ‘𝐶)
isfth.j 𝐽 = (Hom ‘𝐷)
ffthf1o.f (𝜑𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺)
ffthf1o.x (𝜑𝑋𝐵)
ffthf1o.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ffthf1o (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹𝑋)𝐽(𝐹𝑌)))

Proof of Theorem ffthf1o
StepHypRef Expression
1 isfth.b . . 3 𝐵 = (Base‘𝐶)
2 isfth.h . . 3 𝐻 = (Hom ‘𝐶)
3 isfth.j . . 3 𝐽 = (Hom ‘𝐷)
4 ffthf1o.f . . . . 5 (𝜑𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺)
5 brin 5203 . . . . 5 (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Faith 𝐷)𝐺))
64, 5sylib 218 . . . 4 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Faith 𝐷)𝐺))
76simprd 495 . . 3 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
8 ffthf1o.x . . 3 (𝜑𝑋𝐵)
9 ffthf1o.y . . 3 (𝜑𝑌𝐵)
101, 2, 3, 7, 8, 9fthf1 17980 . 2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)))
116simpld 494 . . 3 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
121, 3, 2, 11, 8, 9fullfo 17975 . 2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹𝑋)𝐽(𝐹𝑌)))
13 df-f1o 6576 . 2 ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹𝑋)𝐽(𝐹𝑌)) ↔ ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)) ∧ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹𝑋)𝐽(𝐹𝑌))))
1410, 12, 13sylanbrc 583 1 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹𝑋)𝐽(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cin 3965   class class class wbr 5151  1-1wf1 6566  ontowfo 6567  1-1-ontowf1o 6568  cfv 6569  (class class class)co 7438  Basecbs 17254  Hom chom 17318   Full cful 17965   Faith cfth 17966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-map 8876  df-ixp 8946  df-func 17918  df-full 17967  df-fth 17968
This theorem is referenced by:  catcisolem  18173
  Copyright terms: Public domain W3C validator