MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffthf1o Structured version   Visualization version   GIF version

Theorem ffthf1o 17870
Description: The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
isfth.b 𝐵 = (Base‘𝐶)
isfth.h 𝐻 = (Hom ‘𝐶)
isfth.j 𝐽 = (Hom ‘𝐷)
ffthf1o.f (𝜑𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺)
ffthf1o.x (𝜑𝑋𝐵)
ffthf1o.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ffthf1o (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹𝑋)𝐽(𝐹𝑌)))

Proof of Theorem ffthf1o
StepHypRef Expression
1 isfth.b . . 3 𝐵 = (Base‘𝐶)
2 isfth.h . . 3 𝐻 = (Hom ‘𝐶)
3 isfth.j . . 3 𝐽 = (Hom ‘𝐷)
4 ffthf1o.f . . . . 5 (𝜑𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺)
5 brin 5201 . . . . 5 (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Faith 𝐷)𝐺))
64, 5sylib 217 . . . 4 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Faith 𝐷)𝐺))
76simprd 497 . . 3 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
8 ffthf1o.x . . 3 (𝜑𝑋𝐵)
9 ffthf1o.y . . 3 (𝜑𝑌𝐵)
101, 2, 3, 7, 8, 9fthf1 17868 . 2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)))
116simpld 496 . . 3 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
121, 3, 2, 11, 8, 9fullfo 17863 . 2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹𝑋)𝐽(𝐹𝑌)))
13 df-f1o 6551 . 2 ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹𝑋)𝐽(𝐹𝑌)) ↔ ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)) ∧ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹𝑋)𝐽(𝐹𝑌))))
1410, 12, 13sylanbrc 584 1 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹𝑋)𝐽(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cin 3948   class class class wbr 5149  1-1wf1 6541  ontowfo 6542  1-1-ontowf1o 6543  cfv 6544  (class class class)co 7409  Basecbs 17144  Hom chom 17208   Full cful 17853   Faith cfth 17854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-map 8822  df-ixp 8892  df-func 17808  df-full 17855  df-fth 17856
This theorem is referenced by:  catcisolem  18060
  Copyright terms: Public domain W3C validator