| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffthf1o | Structured version Visualization version GIF version | ||
| Description: The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017.) |
| Ref | Expression |
|---|---|
| isfth.b | ⊢ 𝐵 = (Base‘𝐶) |
| isfth.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isfth.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| ffthf1o.f | ⊢ (𝜑 → 𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺) |
| ffthf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ffthf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ffthf1o | ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfth.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | isfth.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | isfth.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 4 | ffthf1o.f | . . . . 5 ⊢ (𝜑 → 𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺) | |
| 5 | brin 5159 | . . . . 5 ⊢ (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ (𝐹(𝐶 Full 𝐷)𝐺 ∧ 𝐹(𝐶 Faith 𝐷)𝐺)) | |
| 6 | 4, 5 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ∧ 𝐹(𝐶 Faith 𝐷)𝐺)) |
| 7 | 6 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
| 8 | ffthf1o.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | ffthf1o.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | 1, 2, 3, 7, 8, 9 | fthf1 17881 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 11 | 6 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
| 12 | 1, 3, 2, 11, 8, 9 | fullfo 17876 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 13 | df-f1o 6518 | . 2 ⊢ ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↔ ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) | |
| 14 | 10, 12, 13 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 class class class wbr 5107 –1-1→wf1 6508 –onto→wfo 6509 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Hom chom 17231 Full cful 17866 Faith cfth 17867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-ixp 8871 df-func 17820 df-full 17868 df-fth 17869 |
| This theorem is referenced by: catcisolem 18072 uptrlem1 49199 uptrar 49205 uptr2 49210 |
| Copyright terms: Public domain | W3C validator |