| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffthf1o | Structured version Visualization version GIF version | ||
| Description: The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017.) |
| Ref | Expression |
|---|---|
| isfth.b | ⊢ 𝐵 = (Base‘𝐶) |
| isfth.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isfth.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| ffthf1o.f | ⊢ (𝜑 → 𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺) |
| ffthf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ffthf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ffthf1o | ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfth.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | isfth.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | isfth.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 4 | ffthf1o.f | . . . . 5 ⊢ (𝜑 → 𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺) | |
| 5 | brin 5154 | . . . . 5 ⊢ (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ (𝐹(𝐶 Full 𝐷)𝐺 ∧ 𝐹(𝐶 Faith 𝐷)𝐺)) | |
| 6 | 4, 5 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ∧ 𝐹(𝐶 Faith 𝐷)𝐺)) |
| 7 | 6 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
| 8 | ffthf1o.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | ffthf1o.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | 1, 2, 3, 7, 8, 9 | fthf1 17857 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 11 | 6 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
| 12 | 1, 3, 2, 11, 8, 9 | fullfo 17852 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 13 | df-f1o 6506 | . 2 ⊢ ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↔ ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) | |
| 14 | 10, 12, 13 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 class class class wbr 5102 –1-1→wf1 6496 –onto→wfo 6497 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Hom chom 17207 Full cful 17842 Faith cfth 17843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-ixp 8848 df-func 17796 df-full 17844 df-fth 17845 |
| This theorem is referenced by: catcisolem 18048 uptrlem1 49172 uptrar 49178 uptr2 49183 |
| Copyright terms: Public domain | W3C validator |