MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffthf1o Structured version   Visualization version   GIF version

Theorem ffthf1o 17188
Description: The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
isfth.b 𝐵 = (Base‘𝐶)
isfth.h 𝐻 = (Hom ‘𝐶)
isfth.j 𝐽 = (Hom ‘𝐷)
ffthf1o.f (𝜑𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺)
ffthf1o.x (𝜑𝑋𝐵)
ffthf1o.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ffthf1o (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹𝑋)𝐽(𝐹𝑌)))

Proof of Theorem ffthf1o
StepHypRef Expression
1 isfth.b . . 3 𝐵 = (Base‘𝐶)
2 isfth.h . . 3 𝐻 = (Hom ‘𝐶)
3 isfth.j . . 3 𝐽 = (Hom ‘𝐷)
4 ffthf1o.f . . . . 5 (𝜑𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺)
5 brin 5117 . . . . 5 (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Faith 𝐷)𝐺))
64, 5sylib 220 . . . 4 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Faith 𝐷)𝐺))
76simprd 498 . . 3 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
8 ffthf1o.x . . 3 (𝜑𝑋𝐵)
9 ffthf1o.y . . 3 (𝜑𝑌𝐵)
101, 2, 3, 7, 8, 9fthf1 17186 . 2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)))
116simpld 497 . . 3 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
121, 3, 2, 11, 8, 9fullfo 17181 . 2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹𝑋)𝐽(𝐹𝑌)))
13 df-f1o 6361 . 2 ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹𝑋)𝐽(𝐹𝑌)) ↔ ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)) ∧ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹𝑋)𝐽(𝐹𝑌))))
1410, 12, 13sylanbrc 585 1 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹𝑋)𝐽(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cin 3934   class class class wbr 5065  1-1wf1 6351  ontowfo 6352  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7155  Basecbs 16482  Hom chom 16575   Full cful 17171   Faith cfth 17172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-map 8407  df-ixp 8461  df-func 17127  df-full 17173  df-fth 17174
This theorem is referenced by:  catcisolem  17365
  Copyright terms: Public domain W3C validator