![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffthf1o | Structured version Visualization version GIF version |
Description: The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017.) |
Ref | Expression |
---|---|
isfth.b | ⊢ 𝐵 = (Base‘𝐶) |
isfth.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isfth.j | ⊢ 𝐽 = (Hom ‘𝐷) |
ffthf1o.f | ⊢ (𝜑 → 𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺) |
ffthf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ffthf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
ffthf1o | ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfth.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | isfth.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | isfth.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
4 | ffthf1o.f | . . . . 5 ⊢ (𝜑 → 𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺) | |
5 | brin 5203 | . . . . 5 ⊢ (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ (𝐹(𝐶 Full 𝐷)𝐺 ∧ 𝐹(𝐶 Faith 𝐷)𝐺)) | |
6 | 4, 5 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ∧ 𝐹(𝐶 Faith 𝐷)𝐺)) |
7 | 6 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
8 | ffthf1o.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | ffthf1o.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | 1, 2, 3, 7, 8, 9 | fthf1 17980 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
11 | 6 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
12 | 1, 3, 2, 11, 8, 9 | fullfo 17975 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
13 | df-f1o 6576 | . 2 ⊢ ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↔ ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) | |
14 | 10, 12, 13 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3965 class class class wbr 5151 –1-1→wf1 6566 –onto→wfo 6567 –1-1-onto→wf1o 6568 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 Hom chom 17318 Full cful 17965 Faith cfth 17966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-map 8876 df-ixp 8946 df-func 17918 df-full 17967 df-fth 17968 |
This theorem is referenced by: catcisolem 18173 |
Copyright terms: Public domain | W3C validator |